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Dear Editor, 

Emotion is a core element of human identity and greatly influences our perceptions of the 

world and our responses to it. Our emotions fluctuate between different states on both long and 

short timescales and are composed of multiple dissociable elements, including valence (positive 

vs. negative) and arousal (high vs. low) [1]. Dysregulation of emotional systems is associated 

with various affective disorders, particularly depression. Over the past 20 years, major 

depressive disorder (MDD) has been increasingly recognized as a consequence of pathological 

neurophysiological activity across a distributed network of cortical and subcortical structures, 

including limbic regions. However, due to several factors including the phenotypic heterogeneity 

of MDD, limited opportunities for high resolution neural recordings in affected brain networks, 

and lack of tools for objective emotion quantification, the pathophysiology underlying MDD is 

still poorly understood [2]. 

Leveraging unique opportunities for intracranial recordings in humans, we [3] and others 

[4] have made progress in understanding the neural representation of human emotion. In a cohort 

of 3 patients with treatment-resistant depression (TRD) undergoing intracranial monitoring as 

part of an ongoing clinical trial (NCT03437928) [5], we recently identified patterns of prefrontal 

neural activity that predicted depression severity [3]. Specifically, we found that increased high 

frequency (gamma, high-gamma) power and decreased low frequency (delta, theta, alpha) 

power, particularly in the anterior cingulate cortex (ACC), predicted reduced depression severity. 

This study relied on the current gold-standard for quantifying emotion– repeated administration 

of self-report assessments. However, relying on self-report has two major limitations: patients 

often have difficulty assessing their own emotional state, and the requirement for active 

engagement imposes burdens on both the patient and clinical staff [6], resulting in fatigue effects 
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and low test-retest reliability [7]. As a result, emotional measurements using self-report are 

necessarily temporally sparse. By contrast, neural data can be collected continuously with high 

temporal resolution. With more objective, temporally resolved measures, we can relate emotion 

to underlying changes in neural activity in a way that circumvents the disadvantages of self-

report and provides continuous, low-burden characterization of the neural correlates of emotional 

expression. 

Here, we demonstrate the ability to relate intracranial neural recordings with dimensional, 

temporally resolved estimates of emotional state derived from continuously acquired behavioral 

data. We developed a platform for continuous recording of dense, multi-modal behavior 

synchronized to our high-resolution neurophysiological data in an inpatient setting adapted from 

the epilepsy monitoring unit. This setup allowed us to capture naturalistic behavior across 

multiple speakers during a range of affective states. Specialized artificial intelligence (AI) tools 

for affective computing further enabled us to recognize, interpret, and quantify human emotional 

behavior from these various data streams. Using audio data from everyday social interactions 

between the patient and clinical team captured with this platform, we extracted continuous 

measures of two core emotional dimensions: valence and arousal. Previous work has shown that 

characterizing affective state in terms of continuous, latent dimensions can better reflect the 

inherent complexity and continuity of affective behavior compared to discrete emotion labels [8]. 

In fact, automatic affect sensing and recognition models that incorporate emotional dimensions 

perform significantly better on continuous affect prediction from audiovisual cues than those that 

discretize the continuous spectrum of emotion into distinct categories [9]. 

We recorded daily, natural conversations from an individual with severe depression 

participating in the aforementioned clinical trial across 9 days (14 conversations, total 
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duration=250.4 minutes, mean=17.9 minutes, SD=11.5) (Figure 1A). Contiguous 5-second 

windows of audio recordings were input to a pre-trained model for speech emotion recognition 

based on Wav2Vec 2.0 that was fine-tuned and validated on a large naturalistic speech dataset 

[10]. This model generated continuous valence and arousal estimates across all conversations 

(Figure 1B). By computing continuous, temporally resolved streams of emotional dimensions, 

we were able to use these features to infer changes in emotional status at varying time scales. 

Using intracranial EEG, we also directly measured simultaneous neural activity with high 

spatial and temporal precision across prefrontal and temporal regions relevant for emotional 

processing (Figure 1C). Neural data were collected at 2 kHz and time-aligned to simultaneous 

audio. We then computed spectral power within canonical bands using a Hilbert transformation 

of bipolar re-referenced, bandpass filtered signals. Outputs were smoothed with a 15-second 

kernel to match the temporal resolution of behavioral measures. 

We then performed canonical correlation analysis to identify the linear projection weights 

that yielded the highest possible correlations between emotion and neural modalities in the 

canonical space (Figures 1D, 1E). The first canonical correlate indicated that valence and arousal 

values related to positive affective state (Figure 1F) were maximally correlated with increased 

high frequency and decreased low frequency neural features across prefrontal and temporal 

regions (Figure 1G). These results recapitulate the specific neural activity pattern observed in 

previous studies, where increased high frequency and decreased low frequency neural activity 

were associated with positive affective behaviors [4], as well as reduced depression severity [3]. 

Demonstration of these relationships using an orthogonal method of quantifying emotion 

reinforces the potential role of this brain state in positive mood.  
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Similar to recent work by Alagapan et al. 2023, which showed that neural activity in a 

diverse set of spectral bands tracks depression severity (using clinical scales) over months, our 

data suggest that a similarly diverse set of spectral bands track valence and arousal (using patient 

speech) over shorter timescales. Both highlight the importance of assessing changes in patient 

latent states over time. Our work additionally showcases the ability to do this in a more 

naturalistic, fine-grained, time-resolved, and dimensional way. This method allows us to still 

track long-term changes over time, while also capturing acute fluctuations within these longer 

timescales. While it is yet unclear whether the neurophysiology associated with momentary 

changes in emotional state is of relevance for therapeutic decision making, it is an important first 

step towards understanding the neural activity underlying mood and, in turn, developing 

treatments for affective disorders.  

Future directions for this work involve extending these analyses to other modalities and 

working towards a unified, multimodal model for detection of affective state change. These 

solutions can involve a combination of added measures, such as pose estimation and movement 

of facial action units (from video) and measurement of physiological variables like heart rate 

variability and breathing rate (from wearables). Much like the clinical interview, in which a 

mental health expert is trained to generate clinical impressions by incorporating several streams 

of informational content, this approach would enable multimodal analysis of affect in a more 

scalable, objective, time-resolved, and quantifiable way. If successful, these tools will allow for 

an improved understanding of the temporal dynamics and neurophysiological markers of 

emotion and, in turn, development of more effective neuromodulatory treatments for affective 

disorders. 
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Figure 1. Neural features predicting emotional state derived from natural conversations. 

(A) A clinical trial subject with treatment-resistant depression engaged in conversations with the 

research team during their 10-day inpatient stay in an adapted epilepsy monitoring unit setting. 

Conversation topics naturally ranged from past events in the patient’s life to current interests and 

activities. Six of the fourteen conversations were of sufficient duration and were included in 

analyses (total 149 min). (B) We used a speech emotion recognition model (Wav2Vec 2.0) to 

automatically estimate affect fluctuations from the speech audio. Sample outputs for arousal 

(dark green) and valence (light green) dimensions over time are shown for a sample excerpt. (C) 

We analyzed concurrent neural recordings from intracranial EEG electrodes sampling emotion-

relevant frontotemporal regions (magenta=anterior cingulate cortex, red=amygdala, 

yellow=orbitofrontal cortex, blue=dorsolateral prefrontal cortex, orange= ventrolateral prefrontal 

cortex, green=ventromedial prefrontal cortex). After removing channels with non-neural data, 

noisy signal, or white-matter contacts, 63 electrode contacts remained for analysis. We extracted 

Hilbert envelopes for canonical frequency bands from delta to high-gamma. (D) In order to 

identify the neural features associated with affect fluctuations in the speech audio, we conducted 

canonical component analysis with concurrent, time-aligned emotion (green) and neural (purple) 

data collected during the patient’s speech as input data. (E) Averaged across all five folds from a 

leave-one-out cross validation scheme, maximum correlation was achieved at R = .585, which 

exceeded the null 95th percentile range of [-0.116, 0.130] estimated using permutation testing (N 

= 1,000). Data shown are for all folds and sessions, subsetted for the patient’s speaking portions. 

(F) Projection weights (y-axis; scaled) for affect were positive for both arousal and valence, 

corresponding to a positive affective state. Explained variance for the two emotion dimensions 

were 63.5% and 47.7%, respectively, both of which exceeded the null 95th percentile ranges of 
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[18.8%, 37.8%] and [18.5%, 36.9%]. (G) Projection weights for neural data are organized by 

recording site (horizontal-axis; ACC: anterior cingulate cortex; Amyg: amygdala; OFC: 

orbitofrontal cortex; dlPFC: dorsolateral prefrontal cortex; vlPFC: ventrolateral prefrontal cortex; 

vmPFC: ventromedial prefrontal cortex) and frequency band (vertical-axis; δ: 1-4 Hz; θ: 4-8 Hz; 

β: 12-30 Hz; γ: 35-50; high- γ: 70-150 Hz). The color indicates the scaled projection weights for 

column-wise scaled raw features, thresholded for significant explained variance (87 of 378 

features) based on permutation testing (N = 1,000; FDR-P < 0.05; mean: 32.3%; SD: 9.6%; null 

95th percentile range: [27.0%, 30.1%]). Among significant features, the sign of projection 

weights varied as a function of frequency range (χ2 = 25.2; P < 0.005): all significant features in 

γ and high-γ bands were positive, while features in δ and θ bands were predominantly negative 

(88.9% and 100%, respectively). We found no significant differences between overall projection 

weights in the right versus left hemisphere (t-stat = 0.777, p-value = 0.438) or between 

projection weights for any of the specific frequency bands in the left versus right hemisphere (δ: 

t-stat = 0.005, p-value = 0.996; θ: t-stat = -0.169, p-value = 0.866; α: t-stat = -1.086, p-value = 

0.282; β: t-stat = 1.205, p-value = 0.233; γ: t-stat = 0.368, p-value = 0.714; hγ: t-stat = 1.159, p-

value = 0.251). 
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