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We propose that the entirety of the prefrontal cortex (PFC) can be seen as
fundamentally premotor in nature. By this, we mean that the PFC consists
of an action abstraction hierarchy whose core function is the potentiation
and depotentiation of possible action plans at different levels of granularity.
We argue that the apex of the hierarchy should revolve around the process of
goal-selection, which we posit is inherently a form of optimization over
action abstraction. Anatomical and functional evidence supports the idea
that this hierarchy originates on the orbital surface of the brain and extends
dorsally to motor cortex. Accordingly, our viewpoint positions the orbito-
frontal cortex in a key role in the optimization of goal-selection policies,
and suggests that its other proposed roles are aspects of this more general
function. Our proposed perspective will reframe outstanding questions,
open up new areas of inquiry and align theories of prefrontal function
with evolutionary principles.

This article is part of the theme issue ‘Systems neuroscience through the
lens of evolutionary theory’.
1. Introduction
As we move around the world, our bodies engage in small movements that are
often unrelated to the task at hand. An important recent study shows that, in
mice, these small movements account for a large amount of the explainable var-
iance in firing rate of neurons ([1]; see also related findings in [2,3]). These effects
were found not just in motor cortex, but, surprisingly, across the entire brain.
These findings came about as a result of the careful measure and registration
of the full suite of animal behaviour; previous studies that did not measure
these movements would have treated them as a source of noise to be ignored.
Overall, these results highlight the importance of motor control for the brain as
a whole.

It is fascinating howmuch of the neural response is determined by seemingly
unimportant motor activity. Likewise, it is surprising—and humbling—to see
the extent to which the cognitive variables that are central to so many models
of cognition wind up being relatively small factors in determining the firing
rates of neurons [1]. Despite decades of debate about how these regions differ
functionally, when we consider factors that drive firing rates the most, these
regions turn out to largely have the same function when measured this way.
This is not to say that these results support mass action theories. However,
they invite us to ask whether studies that focus on differences in brain areas
are ignoring the much larger common factors that drive all the regions.

Indeed, from another perspective, these results should not be too surprising.
After all, the brain exists, first and foremost, to control behaviour [4–6]. This per-
spective is found as far back as the work of Sherrington, who argued that ‘Life’s
aim is an act, not a thought’ [7, p. 201]. From that perspective, the brain’s other
functions, including the ones that correspond to the chapters of any cognitive
neuroscience textbook (attention, reward, memory, executive function, etc.), are
there to influence action. If they do not influence action, they are otiose. And if
they do influence action, they are minor modulatory factors for the expression

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2020.0524&domain=pdf&date_stamp=2021-12-27
http://dx.doi.org/10.1098/rstb/377/1844
http://dx.doi.org/10.1098/rstb/377/1844
mailto:benhayden@gmail.com
http://orcid.org/
http://orcid.org/0000-0002-7678-4281


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20200524

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 D

ec
em

be
r 

20
21

 

of action. What is most surprising is how large the motor
effects are even in regions with no obvious motor role.
Which suggests that, when factoring in full motor behaviour,
so much of the brain has a motor or premotor role. In other
words, these results advocate for the primacy of motor
expression for understanding neural activity, not just in
motor regions, but brainwide. They suggest, at least to us,
that motor activity not only accounts for much of the variance
in neural firing but serves as the organizing structure for the
rest of our mental activity. They also cohere with an evol-
ution-centric view of functional neuroanatomy—anything
that does not advance the cause of driving behaviour should
not last long as a major part of the brain’s repertoire [8].

Here, we make the argument that the premotor perspective
is a useful vantage point for thinking about the functional
organization of the prefrontal cortex (PFC). While our argu-
ments may apply beyond the PFC, we limit ourselves to
that part of the brain because (i) its functions have for long
resisted overall theoretical integration, and (ii) aside from
the cited papers, the evidence for our claims is much stronger
for the PFC than it is for earlier regions, where it is, in our
view, mostly theoretical. Beyond these two points, the PFC
is our area of scholarly interest, and of interest to people inter-
ested in higher cognitive functions and their dysregulation in
psychiatric diseases. We will make a special focus on the
orbitofrontal cortex (OFC), largely to emphasize the contrast
between our position and more conventional theories of PFC
function. The OFC, being the most hierarchically distant from
the frank motor structures, shows the greatest explanatory
difference in our accounting. In making our arguments, we
build on the idea that while hierarchical theories of PFC func-
tions have espoused the impact of rule optimization, they
have marginalized out the process of selecting goals that
situates rule optimization in the first place.
2. The whole prefrontal cortex is a premotor
structure

We believe that taking seriously the primacy of motor
expression in driving brain activity has important implications
for systems neuroscience. In particular, we think that this view
can help organize understanding of the ever-mysterious PFC
[9–12]. This large portion of the brain is typically associated
with non-motor cognitive processes, such as executive function
and control, as well as working memory, inhibition, learning
and maintaining and switching task set [9,11,13–15]. Note
that we are not arguing that other theories of PFC are incorrect.
Our ideas, outlined below, will be speculative and need data to
support them. Moreover, we believe that full understanding of
a structure as complex as PFC benefits from multiple perspec-
tives—all of which, including our own, have limitations.
However, we believe that these views can be felicitously aug-
mented by considering the fundamental role of the PFC in
driving or setting the stage for action, and seeing the proposed
roles of its constituent regions through that lens.

This viewpoint is part of a larger view that advocates for
thinking of cognition as an extension of action selection, not
as something wholly separate from it [16–22]. We humans
(or other animals) move through the world and happen to
come upon things that interest us. Those things that we
encounter are associated with specific actions. From an econ-
omic perspective, the relevant action would be selection; in
foraging theory, it would be pursuit or handling [23]. In Gibso-
nian psychology, the roughly analogous concept is that we
encounter options that activate an affordance associated with
selection [19,24–26]. Each potential action can either be per-
formed or not performed. If a potential action rises to the
level of consideration, the brain gathers available evidence,
filters it for relevance, and uses that to militate for or against
performing the action. The brain uses the same accept–reject
principles for both trivial decisions and serious ones like
choosing whether to buy a house or marry a partner
[27–30]. The processes that increase or decrease the likelihood of
performing an action wind up guiding the selection of actions,
and are therefore—in a non-trivial sense—premotor. Because
guiding these decisions is the chief function of the PFC, the
whole PFC can validly be called premotor cortex (PMC).
3. Wait, what is premotor cortex again?
PMC, as the term is traditionally used, is defined by its relation-
shipwithmotor cortex [31,32].Motor cortex is, of course, cortex
whose chief function is the regulation either by planning, mod-
ifying or executing movements, or some combination of those
[33–35]. PMC is thought to have a more abstract and high-level
motor function, serving a more regulatory or supervisory role
[32,36,37]. The term PMC was originally coined by Hines [31],
owing to its adjacent position to and connectivity with motor
cortex. This connectivity implies that the PMC is hierarchically
earlier than themotor cortex. Themajor function of PMC is pre-
sumed to be to set the stage for motor cortex by potentiating
certain motor plans and depotentiating other ones [38,39].

The idea that PMC regulates higher-level motor plans
rather than enacts them (e.g. by signalling spinal motor neur-
ons) was first shown by Woolsey [40], who found stimulation
of PMC did not produce movements (see also [41]). Later
studies showed though that movements can be evoked by
premotor stimulation, but are often more complex (e.g.
whole hand grasping) those elicited by stimulation of pri-
mary motor cortex (e.g. specific muscle innervation; [42]).
The notion of PMC as biasing downstream action execution
is bolstered by its larger preoccupation during movement
planning compared to online execution [43]. A high-level
action regulatory role for PMC is supported by recordings
showing preparatory activity [44] for reach direction speci-
ficity [43], encoding of multiple possible motor plans rather
than a singular action [45], switching between action plans
and during online control [37,46,47].

These findings indicate that the PMC has an ancillary
motor function. That is, while it does not directly drive
muscle specific responses, it plays an invaluable function: it
sets the stage for action by making some actions more or
less likely. In other words, it influences motor function by
potentiating or depotentiating actions. In summary, then,
the traditional view of the PMC is that, anatomically and
functionally, it resides at the first level of what we and
others (reviewed next) argue is an action abstraction hierar-
chy. The essence of our argument is that other prefrontal regions
extend this hierarchical control of action and can also be described
similarly to premotoric terms as (de)potentiating abstractions of
action. In other words, other prefrontal regions do not differ
from PMC in kind, just in hierarchical level.

As we will argue below, the functions of these other
regions, including their economic ones, can be explained, at
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Figure 1. Functional organization of the prefrontal cortex, as proposed by
Fuster (e.g. in [14,49,50]). In this cartoon, the brain takes in information
from the environment, processes it, and generates actions. The processing
is hierarchical, and involves a gradual transformation from input to output.
Critically, Fuster’s proposal ignores a separate central executive.
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least in part, by their premotor role. The major difference
between PMC and other prefrontal regions is that the latter
are anatomically and hierarchically earlier, and the actions
they deal with are probably more abstract, more tangled
and more aligned with sensory input features than classically
defined PMC [48].

Our view is related to, but distinct from, the philosophical
position that the entire brain is a premotor structure. That
view is predicated on the fact that all brain activity is
aimed at driving behaviour, either directly or indirectly.
From that view, even the retinas are premotor since high
level form vision is there to identify items in the scene and
drive relevant action, so action is just an untangled form of
retinal processes. To give another example, in the case of
forming long-term memories, the relevance to behaviour is
extremely indirect, but is nonetheless eventually action
oriented. While we have some sympathy with this viewpoint,
the point we are making is narrower. Even if non-PFC regions
do guide action, their guidance may be so specialized and
indirect that it is more useful to think of their role in terms
of that specialized function. For example, a face-detection
neuron may ultimately serve the purpose of helping to
decide what to do when that face comes into view, but it is
more useful to declare it a face detector. We believe the
same logic does not apply in PFC, however. Thus, as we
will argue, one could think of OFC neurons as value enco-
ders, but this is a less useful and convenient framework for
thinking about them than thinking about their premotor
roles. In other words, we propose that it is useful to think
of the PFC as a premotor structure even if we are not willing
to think of the entire brain as a premotor structure.

The PFC has certain features, especially in its integration of
information from multiple sources, that make it convenient to
start there. We can simultaneously accept two points: (i) form
vision is very useful for action selection, and (ii) evolution
has apparently selected for a specialized dedicated visual
system that serves the purpose of encoding visual form. This
second point is critical. Apparently, it is a better design prin-
ciple for visual inputs to converge and come to some
consensus on form identity before integrating with other mod-
alities, such as the visceral and olfactory systems. Regardless of
the evolutionary reason, the visual system is conveniently
thought of as a visual system—that is, it has a somewhat mod-
ular visual function. This is not to discount evidence for non-
visual signals in the visual system, just to say that it has a
strong bias towards visual function that other sensory cortical
regions do not have. Other systems, for example, the brain’s
olfactory and auditory systems, may also have somewhatmod-
ular functions. The argument here is that PFC is not a modular
system in the sameway these ones are identifiable as modular.
Instead, it reflects the convergence of multiple, more modular
systems and serves as an important step in a hierarchy that
produces action.
4. Hierarchies of action: abstraction, control and
goals

In theorizing about the functions of the PFC as premotoric, our
view is anticipated by Fuster ([14,49,50]; figure 1). Fuster
viewed the PFC as part of a hierarchy oriented towards the
control of action. He said, for example, that ‘the entire cortex
of the primate’s frontal lobe seems dedicated to organismic
action. It can, thus, be considered, as a whole, ‘motor’ or
‘executive’ cortex in the broadest sense’ [49, p. 66]. Note that
Fuster here uses the word executive in the sense of executing
action as distinguished from sensation, not in the sense of a
discrete and separate executive or supervisory system.

Of course, Fuster does not mean that the entire PFC is an
undifferentiated mass of one extended PMC. There are well
described functional differences with the PFC, and there is a
larger organization. To quote Fuster again, ‘much of the preva-
lent confusion in the PFC literature derives from two common
errors. The first is to argue for one particular prefrontal func-
tion while opposing or neglecting others that complement it;
the second is to localize any of them within a discrete portion
of PFC’ [50, p. 319]. In other words, Fuster proposes that the
core function of the PFC is motor control, that its organization
is hierarchical, and that its regions differ in their position, not in
their nameable function.

Interestingly, though, Fuster’s focus was primarily on the
lateral PFC. It may be that, when considering the orbital and
medial prefrontal cortices, there is greater evidence for func-
tional specialization. Unfortunately, aside from the dorsal
anterior cingulate cortex, the medial wall of the PFC is less
well-studied and less well understood than the lateral surface.
Our laboratory's research has generally demonstrated func-
tional continuity between orbital and medial structures (e.g.
[51,52]). Indeed, our laboratory recently tested these ideas by
comparing four medial wall structures in a single task, and
found evidence for broad continuity of function, although we
found evidence for a gradual gradient of function [53]. These
findings suggest that the principle of hierarchy may apply
just as well to medial as to lateral structures, and therefore
may be a general principle of prefrontal organization.

Nonetheless, the notion of action and abstraction hierarchies
already figures heavily into several theories of goal-directed
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cognitive control and decision-making. Generally, such hier-
archical theories propose that areas within the PFC can
be described as some type of abstraction hierarchy over action
control, culminating in the motor cortex and interacts with
basal ganglia circuits [6,54–58]. What differentiates these
theories is how the brain deploys hierarchical abstraction
to control behaviour after a goal (e.g. feed your friends) is
already specified.

This idea of hierarchical control can be illustrated by con-
sidering the case of a person who is interested in cooking
dinner for a visitor. That goal could be satisfied by any
number of possible actions, meaning that successful cooking
of the food can be accomplished through any number of
specific body movements. And indeed, the higher-level
choice (what to cook) can be implemented in multiple steps
(which things to cook in which order), and each of those
can be executed in multiple specific actions (turn left to
grab the saucepan, etc.). So the decision about cooking is at
a higher hierarchical level than the execution of the motor
actions, although both are parts of control, broadly speaking.
Indeed, planning and decision-making takes place at more
levels than this—they involve a whole series of levels, includ-
ing even more abstract ones, like whether cooking is best, or
ordering takeout might be smarter.

Indeed, the ideas of abstraction and hierarchy for action
already figure heavily in many theories of cognitive control
and decision-making in PFC. Perhaps the most influential
framework posits that abstraction hierarchies in PFC can be
decomposed into different types of cognitive operations
[9,54,59]. These operations include abstractions over temporal
information, schemas or states and policy abstraction. Policy
abstraction is most directly related to action control and
aligns with the motor hierarchy in Fuster’s [49] conception
[60]. Policies in this framework are rule-based mappings
that are contextualized by more general rule-based policies.
For example, having the goal state of entertaining a new
person will map to the higher-order action of ‘cooking for a
date’ is an example of policy or state-action mapping. A
high-level goal like ‘cooking’ is an example of an abstract
policy that generalizes over lower-order policies constrained
by contextual information regarding what to cook; context
here could be a person’s dietary preferences. In this example,
policy abstraction links states and goals to potential action,
with higher-order contexts like dietary preferences determin-
ing lower-order conditions for actions (e.g. make vegetarian
not meat dish). Essentially, the least abstract policies during
cooking a meal might directly map from states like ‘in front
of a heated stove’ to an action of ‘grasp pan with right hand’.
The states driving a that map policy actions are essentially a
set of features containing information that affect the choice
made, such as the person being cooked for combined with
knowledge that they enjoy being cooked for is a state [61].

While these ideas of action hierarchy have enjoyed success
in describing behaviour, there are several debates surrounding
how to define a hierarchy. One organizing principle is driven
by determining which cognitive function, such as temporal,
schema or policy (rule) abstraction is more higher-order [9].
Another approach is defining it based on anatomical or func-
tional connectivity [62]. This has led to disagreement about
whether mid-dorsolateral PFC, rostrolateral PFC or even
ventromedial PFC (vmPFC) resides atop the purported PFC
control hierarchy. However, to preface our current proposal,
we suspect an issue with previous theorizing is they have
primarily focused on how aspects necessary for behavioural
control are implemented after goals are already specified.
Goal-selection processes itself are not factored into these
extant ideas. Notably, we will argue that both goal-selection
optimization is indeed a higher-order function in the hierarchy
that contextualizes all of these functions, and this process is
the province of OFC, which has connectivity with all of the
aforementioned areas.

Therefore, a formative question raised by these previous
theories and others relates to how the goals that are directing
behaviour are themselves controlled or selected [63,64].
Building on this need to address the origin of goal-selection,
recent ideas on hierarchical action gradients have argued, for
example, that either the OFC (including vmPFC; [65,66])
or frontal pole (Broadmann area 10) may be involved in
either selecting, maintaining or distributing abstracted goal
information (e.g. get food) to other cortical regions [13]. How-
ever, these frameworks have largely considered how goals are
maintained (e.g. working memory, [9,66]), while the issue of
the decision processes underlying goal-selection still awaits
further elaboration.

In line with the above ideas on hierarchy and control, we
propose that consideration of the homeostatic and motiva-
tional drives of behaviour naturally leads to the idea that
goal-selection is also an action decision-process that resides
atop the PFC abstraction hierarchy. Notably, the motivations
for our proposal closely align with Fuster’s conception
of motor hierarchy and PFC [14,49,50]. Key to our idea is
treating goal-selection as a premotor action policy.
5. Goal-selection as driver for policy abstraction
We now turn to delineating our theory in more concrete detail.
We are also proposing that PFC is, fundamentally, an abstrac-
tion hierarchy. That is, each area moving up the hierarchy has
a map between states of different kinds, and progressively
more abstract actions. Choice is not just ‘choosing left versus
right’ or rules of how to attain goals, but also choosing what
goals to follow, goal-selection. And, the difference between
these is one of level, not of kind. The PFC as a whole serves
the orchestration of goal-directed action (the actions one
should take once the goal is specified) as well as the goal-selec-
tion (which goal is to be selected). While we take direct
inspiration from the hierarchical theories reviewed in the pre-
vious section, the novel element of our proposal is that
hierarchical abstraction of action policies be extended to
include goal-selection as the highest level of the process. We
will argue, below, that this can be linked to the OFC.

As an entry point to our idea, consider a descriptive
example of a policy. For example, a person walking to work
might come to a changing cross-walk light while simul-
taneously realizing they are already late for work. The
individual could arbitrate between running across anyway or
biding their time until the cross-light comes on again. All of
these events and stimuli ( features) constitute a state. Formally,
states serve as a summary of all features that affect the choice
of actions. Features could include the overall goal of going to
work, relative time since the light changed and your distance,
traffic conditions, or the emotional or physical cost of being
late for work. The cost of being late could outweigh concerns
for safety, for example, pushing an individual to cross. In this
scenario, the policy is the mapping from how the states (the
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risk of getting hit, the cost of getting hit, the cost of being late)
guide the person in deciding which action (cross or wait) to
take.

Having an example of a policy at work, we can define the
policy of our example as P(Action|State). The notation for
the policy is read as the probability of an action conditioned
on the state. The above example of street-crossing captures
the idea that crossing or waiting is conditioned on the state
and the goal of getting to work. This example accords well
with what most theories mean by policy: action is almost
always defined in terms of specific physical variables or
action rules, e.g. reach or walk if the light is green but not
red. Thus, while these policies operate in service of the goal
of getting to work, the goal is already defined, and is
merely an input that serves lower-level actions.

In our view, though, our imagined person entertains pol-
icies that are richer and more abstract than rule-based action
mappings that are subservient to a pre-specified goal of ‘go
to work’. For example, our person might have flexibility in
their choice of daily schedules, such as the job allows them to
decide whether to work or forgo it in favour of a pleasurable
activity such as kayaking. In totality, we argue this higher-
level choice exemplifies how the action of selecting among (poten-
tially competing) goals is an abstract action policy, in linewith the
premotor notion of (de)potentiating different action.

A first step in defining what this goal-selection policy
would look like is defining the relevant state inputs (or,
equivalently, motivators). (A very detailed overview of how
motivators serve goal-selection is found in [64].) Goal-selection
is moulded by things a decision-maker wants or desires (e.g.
money or pleasure), the external environment (e.g. opportu-
nities during nice weather), pre-existing goals (e.g. work
deadlines or dieting) or their homeostatic needs, such as
hunger or thirst. These motivating states are often subject to
depletion, meaning that a decision-maker must often prioritize
goals that fulfil needs and balance resources based on their
expected future depletion levels [63,67,68], and demarcate
between wants and needs in goal-selection [66,69,70]. Conse-
quently, the evaluative processes underlying goal-selection
dynamics are highly context-dependent, and driven by the
needs for resource uptake (e.g. food or money), as well as
desires [63,68,69,71].

A major implication of the idea that motivation is often
resource dependent is that optimizing goal-selection policies
requires an interaction with planning policies. In other
words, goal-selection must be future oriented. Anyone who
has failed to anticipate their impending hunger, and waited
until they were hungry to go to a restaurant with a long-
wait has experienced the consequences of failing to plan
around these dynamics. One thing to keep in mind is that
we probably do not pick a goal and then plan; instead,
these things occur simultaneously, and interactively [63,72].
The value of pursuing a particular goal (or multiple goals
simultaneously) depends on the availability and feasibility
of plans given different constraints. Interactions between
planning processes and goal-selection dynamics are thus
imperative for ensuring an agent ends up in future states
where goals are met in a reasonable time, have trackable pro-
gress, and provide sufficient replenishment of resources [66].
Notably, the interaction we are referring to is different from
the lower-level isolated process of just planning an action,
for example, to reach an already selected target like a coffee
cup. The aim of these planning and goal-selection
interactions is achieving future states (e.g. satiate hunger)
rather than future movements (e.g. hand on cup). The impor-
tance of this is that such a system allows anticipating desired
states along the way to a goal (goal posts), and how to moni-
tor, correct and replan for deviations away from those states.

Planning interactions, then, is another way in which goal-
selection is essentially premotor. To see this, we can compare
the general algorithmic nature of planning for goal-selection
and sensorimotor control [73]. The two are identical algorith-
mically. Computationally, optimal planning of actions for
achieving goals typically involves learning of a world model
or connections between states and using knowledge of the
states that satisfy goals to plan actions accordingly. For an
agent to optimally plan while minimizing the distance and
resources used, they must start planning from a goal satisfying
state wherein they know needs or goals will be met, and move
backwards to the person’s current world state [63,74], e.g. ima-
gining the path fromwork to home as taken bywalking versus
driving. This same algorithmic approach has been used to suc-
cessfully describe sensorimotor control, such as planning
motor dynamics to reach to a target [73,75]. These ideas indi-
cate a conceptual and algorithmic overlap between planning
for motor control policies and goal-selection policies, blurring
the distinction between abstract goal-selection policies and sen-
sorimotor control policies. As a proof of principle, these types
of goal-selection dynamics have recently shown to be viable in
a biologically realistic neural network [63].

These types of computations for policy optimization are
often quite computationally complex—potentially beyond the
limits of our brains to implement. Information-processing in
the brain is inherently capacity-limited and noisy [76,77].
Owing to these informational constraints, goal-selection
cannot be optimized in an error-free manner [78], due in part
to a combinatorially high-dimensional state (and temporal)
space that goals can be achieved in, uncertainty inwhether pur-
suing a goal will render the desired outcomes, or the error-
proneness of complex plans for goal achievement [79]. We sus-
pect that understanding how individuals deal with these
constraints will be necessary to elucidate the dynamics of
goal-selection. This issue can be usefully reframed as asking
how individuals’ trade-off between the complexity of a goal-
selection policy and plans with the potential benefits or
needs of satisfying certain goals.

Several testable predictions emerge when applying these
frameworks to goal-selection policies, two of which we con-
sider here. A notable prediction is that goal-selection
should exhibit a trade-off between (i) the urgency, amount,
and quality of resources gained to fulfil a need, and (ii) the
temporal (or distance) and the state-space complexity of a
plan for achieving it. This distinction has been experienced
by anyone who knows cooking something would be healthier
than ordering delivery, but cooking is more state-complex
than picking up the phone to order and wait for delivery.
Another prediction is that the imperative for compressing
the policy is that individuals can learn to abstract over
goal-fulfilling states. For example, our person walking to
work may represent the world at different levels of abstrac-
tion depending on need and desire—if thirsty, they may
classify shops into ones that can provide a drink or not; if
thirsty and hungry, they may instead classify shops into ones
offering drinks and food or not. The extent of goal-fulfilling
state abstraction should play a direct role in whether goals
are separated or merged. The point we want to convey in
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discussing this framework and examples is that goal-selection
policies are not merely an abstract thought exercise. They
represent a plausible component of action abstraction hierar-
chies, fit the notion of premotor, and have empirically
testable predictions that are grounded in extant theories of opti-
mizing decision-making [73,79,80]. Furthermore, while we
propose that goal-selection and its interactions with planning
processes are key, there already exist modelling frameworks
that have attempted to quantify what form these costs might
look like [81–83] or explain how such controlled planning
could benefit an agent [84]. An open question is how these pur-
ported costs and optimization objectives predict awide variety
of behaviours across different goal-selection behaviours.

Finally, given the above, we want to specifically delineate
the differences between policies for goal-selection and those
for rules. As standard in cognitive control frameworks, rule
policy abstraction is about linking states to rules governing
action. Rule policy abstraction optimizes different information
than policies for goal-selection, where the latter we are con-
cerned with optimizes the goals to pursue. In this view, rule
or policy abstraction is indeed subservient to goal-selection.
Patently, the policy over rules an agent will entertain will
depend on the agent’s world state. Imperatively, both (i) the
state the agent will end up in in the first place will depend
on their goal, and (ii) the policy over rules they entertain is
also conditional on their goals (for modern deep reinforce-
ment learning implementations of this idea, see [85]).
Therefore, rule-based policy abstractions common in hierarch-
ical theories of cognitive control can and cannot be
conditioned on goals. To put this more formally, we can
write a rule policy abstraction as goal independent, p(rule|
state), or goal conditioned, p(rule|state, goal). Our key point
is that the agentmust also optimize the selection of goals them-
selves, potentially based on the current and desired future
state: p(goal|current state and future state). The selection of
goals through their own policy optimization (as we posit for
OFC) is hierarchically higher than rule-based policy abstrac-
tion. In a mathematical sense, the notion of generic policy
optimization is similar for both rules and goals, but goals sit
hierarchically above rules. Thus, our proposal does not dis-
miss the potential role of the dorsal frontal cortex in rule
policy abstraction, it contextualizes the process of how
agents might optimize different rule policies based on which
goals have been selected.
6. Reconsidering the role of orbitofrontal cortex
as residing atop the premotor prefrontal
cortex hierarchy

We are proposing that the canonical function of OFC is optim-
ization of goal-selection policies. This proposal is consistent
with several recent models that portray OFC as performing
goal-selection and representing the value of an agent’s current
state with respect to its distance to achieving a goal-fulfilling
state [63,71,86,87]. Further support for a goal-selection charac-
terization of OFC is already found in extant OFC lesion
studies and their behavioural consequences. Specifically, a clas-
sic way to examine goal-directed andmotivated behaviour has
been devaluation studies wherein the value of a reward (e.g.
sugar pellet) to the animal is diminished. Under normal con-
ditions, the expectation is that if a reward offer becomes
devalued through satiation or aversion pairing, for example,
the animal will stop or reduce responding to the devalued
rewardpredictive cue [88]. Imperatively,when either rats orpri-
mates have a disrupted OFC function through lesions or
optogenetic disruption, the animal’s capacity for reducing
responding to devalued cues decreases; they still exhibit antici-
patory or actual approach towards the stimuli as though it was
not devalued [89,90]. Additional evidence for the argument
that OFC drives motivated goal-selection, rather than specifi-
cally encoding of economic choice variables, is found in a
study demonstrating OFC optogenetic disruption had no
impact on standard economic choice; in contrast, disruption
led the same animals’ to still approach a reward cue even
after devaluation [91]. Together, we take these types of findings
to indicate that OFC will indeed convey an animals ‘wants’ in
service of their more abstract goal-selection processes.

Another component serving the idea that OFC optimizes
goal-selection is that it is well positioned to be at the top and
most abstract portion of the prefrontal hierarchy. One factor
in favour of this idea is that OFC has a somewhat unique anat-
omy [92,93]. It receives inputs from a diverse array of regions
with heavily specialized functions, positioning OFC as a hub
for integrating disparate information sources and forming
inferences. These connections to OFC include four of the five
major senses (all except the auditory system), from visceral
areas, from hippocampus and amygdala and from the ventral
striatum [94–99]. It does not have direct access to motor or pre-
motor regions. However, its ability to influence them indirectly
is clear. For example, it has direct projections to the ventral,
medial and dorsolateral PFC [100–102], which allow it indirect
descending control over dorsal premotor areas. That is, it is
possible to place it at the apex of a series of regions that, in a
chain, influence the next in the series, to ultimately drive the
motor cortex and other regions with direct spinal motor
neuron access. What distinguishes OFC from other PFC areas
is that it is the first gathering point for distinct and relatively
discrete sensory and association streams.

Our theory,whichportraysOFCasapremotor structure that
optimizes goal-selection, contrasts with the well-known theory
that OFC is predominantly an economic structure [103–108].
The economics view emphasizes the contributions of OFC to
evaluating options and for comparing values to select a pre-
ferred one. While this view has undoubted validity, it has
three limitations. First, it is not clear to what extent the OFC is
more economic than other brain regions. Indeed, a good deal
of evidence supports the idea that economic representations
are highlydistributed, and that comparisons reflect the outcome
of processes occurring in multiple brain regions [21,58,109,110].
Second, it is not clear the extent to which OFC shows specializ-
ation for economic functions. That is, OFC appears to
participate in many cognitive processes, including those that
are only indirectly related to economic decision-making. For
example, research implicates OFC in representation of sensory
details of predictions (e.g. [111–113]), of abstract rules
[114–116] and task- and state-switching [112,117–119]. Third,
and most important, OFC’s apparent value coding appears,
on closer inspection, to reflect expectancy signalling rather
than value coding ([120,121] and [122–125]).

The non-economic view has reached its greatest level of
sophistication in the cognitive map of task space theory
[61,126–128]. That is, its responses serve to encode the set
of relevant mappings associated with potential actions and
options in the current environment. As such it serves as a
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potential source of information that can guide decision-
making and action selection. This set of mappings may
serve as a superset of encodings that also includes reward
information, meaning OFC may be more than just an econ-
omic predictor [61,127–129]. It may also explain, for
example, rule encoding in OFC [114,115]. That should also
include information about space. Indeed, the encoding of
spatial information has taken on an important position in
debates about the mechanisms of choice and valuation in
the OFC [51,103,130,131]. Put differently, evidence for a lack
of spatial selectivity would support the notion of a modular,
non-premotor, purely economic OFC. Despite the debate, a
large set of evidence demonstrates spatial selectivity within
OFC. Spatial selectivity is observed in neurons in primates
[51,131–138] and in rodents [139–145]. Considered together,
this work clearly indicates that single neurons in OFC
respond with information about the spatial details of the
task at hand. We suspect that OFC’s capacity for encoding
of spatial information is particularly important, as this type
of information is necessary for any goal-selecting organism
to decide upon the usefulness of a future goal-fulfilling state.

Linking all of these views and extant findings of OFC
encoding everything from space, rules or value, we propose
that they suggest OFC’s previously measured types of
encoded information are indicative of a much broader func-
tion. They are all necessary for integrating information
useful for guiding decision-making over goals. Put differ-
ently, measures of OFC activity encodings will vary based
on the information needed to determine the current world
state and use that to select among the task goals at hand; if
one must deliberate between two routes to get to work,
spatial information matters, versus if one must select between
two meals with limited cash, then economic value factors will
dominate. In that view, then, the apparent economic, spatial
or cognitive control (rule) based functions of OFC are a
consequence of their factorized influence on goal-selection.
7. Conclusion
We propose that the PFC is, in essence, a hierarchically orga-
nized premotor structure. Casting its organization this way
can help to organize our understanding of its activities. This
view, then, sees the PFC as the mirror reversed complement
of the sensory systems, especially the ventral visual system,
which is organized along the axis of ever more complex form
representation [48]. We propose that viewing the PFC in this
manner will help resolve important debates and will push
researchers away from the quest of identifying the ‘essential
function’ of each regionwithin it, and instead to understanding
how it coordinates its computations to produce action. We
have proposed elsewhere that use of continuous decision-
making tasks, such as prey-pursuit tasks, will help to uncover
more naturalistic modes of behaviour and brain activity
than are captured by standard laboratory tasks [146–148].
Based on the three studies cited at the start of this piece, we
suspect that such tasks will also make more apparent the
fundamentally premotor nature of the PFC.
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