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Foraging theory offers an alternative foundation for

understanding economic choice, one that sees economic

choices as the outcome of psychological processes that

evolved to help our ancestors search for food. Most of the

choices encountered by foragers are between pursuing an

encountered prey (accept) and ignoring it in favor of continued

search (reject). Binary choices, which typically occur between

simultaneously presented items, are special case, and are

resolved through paired alternating accept–reject decisions

limited by the narrow focus of attention. The foraging approach

also holds out promise for helping to understand self-control

and invites a reconceptualization of the mechanisms of

binary choice, the relationship between choosing and stopping,

and of the meaning of reward value.
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Introduction
The need to make economic choices is often framed in

bloodless terms. It is seen as the careful and dispassionate

balancing of competing possibilities and the deliberate

selection of a preferred one. But the brain circuitry

underlying economic choice evolved to make life-or-

death decisions and underwent intense selection pressure

for optimization. It evolved for a specific purpose — to

help us survive. The types of choice that we study in the

lab have a direct analog in the natural repertoire of

animals — the feeding decisions that foragers face. These

decisions must be quick — otherwise we risk losing prey

to flight or rivals — and they must be accurate — when

survival is on the line. For these reasons we believe that a

focus on evolutionary demands, rather than on economic

theory, provides a firm basis for thinking about the neural

basis of economic choices in humans and other animals
www.sciencedirect.com 
[1�,2�]. For these reasons, we believe that economic

choice, and foraging choices more broadly, can be put

under the rubric of survival circuits [3,4] (Figures 1 and 2).

Foraging decisions are accept–reject
decisions
For most foragers, the distribution of prey in the envi-

ronment is patchy in space and ephemeral in time [5]. As

foragers search, prey are generally encountered one at a

time and the forager’s decision is whether to pursue

(accept) or ignore (reject) the prey item. (Note that we

use prey here in the formal sense, to refer to any pursued

diet item, whether it is animal, plant, or other [5].) This

principle is true for foragers searching within a patch

and foragers surveying multiple patches. The elemental

decision in foraging, then, is the accept–reject decision

and not, as in microeconomics, a binary choice between

simultaneously presented items.

Prima facie, accept–reject choices may appear to be just

like other binary choices. After all, they involve selection

between accepting and rejecting an option. The key

difference between accept–reject decisions and other

binary decisions is that the two options are asymmetric:

accept and reject are different. While the psychology of

accepting and rejecting has not been delineated, several

hypotheses seem intuitive. Pursuing a prey item is often

active. It leads to reward consumption (and has features in

common with exploitative choices); in some contexts it

involves a change from the current (search) state. Capture

normally triggers monitoring, adjustment, and learning

processes (as does failed capture following an accept

decision). Rejecting a prey item is often passive, often

maintains the status quo (that is, continuing to search),

and, during the subsequent search, returns the decision-

maker to outwardly oriented searching mode (which has

features in common with exploratory choices). Note that

these relationships may not hold in all contexts; deter-

mining their boundary conditions is important for future

studies.

Insights into self-control from the accept/
reject framework
One important example of the way the accept/reject

framing matters is the performance of animal decision-

makers in intertemporal choice (a.k.a. delay discounting)

tasks. Such tasks, in which animals choose between

delayed large rewards and immediate small rewards,

are a mainstay of the psychology and neuroscience of

self-control (reviewed in [6]). Animals generally appear

impulsive, meaning they prefer a reward offered sooner

even if it is less profitable. This observation is difficult to
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2 Survival circuits

Figure 1
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Animals in natural environments, such as this gorilla at the Karisoke Research Center in Rwanda, generally encounter prey one at a time. Their

decision-making strategies are molded by those encounters and are centered on accept–reject decisions. (Photo credit: Jessica Cantlon).

Figure 2
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Animals in the laboratory, such as this baboon at the Seneca Park Zoo, are often faced with binary decisions. Some research suggests that those

decisions are made as interleaved accept–reject decisions of each option. (Photo credit: Jessica Cantlon).
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reconcile with evolutionary theory because it is highly

maladaptive in the long run.

One possible explanation for the seeming contradiction

between evolutionary pressure toward optimality and

observed behavior is that animals naturally misunder-

stand the structure of laboratory intertemporal choice

tasks and continue to do so after extensive training

[6,7,8]. Specifically, the post-reward adjusting interval

that is added to laboratory intertemporal choice tasks

appears to present a clear learning problem for most

animals; this problem is expected if animals adopt a

expectation-of-ratios heuristic strategy, which is evolution-

arily favored in most natural contexts [8]. In tasks in

which post-reward delays are unambiguously cued, ani-

mals’ choices are much closer to rate-maximizing, sug-

gesting that lack of information about task structure leads

to some apparent impulsivity [9,10]. Indeed, in foraging

tasks with a time component, ostensibly impulsive ani-

mals are almost perfectly patient [10,11�,12,13].

Another important feature of foraging decisions absent

from standard economic ones is the requirement for

persistence in pursuing or handling a prey item after

the decision itself is made. The neural mechanisms of

persistence are just beginning to be understood

[14��15��,16,17]. One key ingredient in many persistence

decisions is the need to maintain an ongoing representa-

tion of the value of the prey and to update that value

continuously as the receipt of the prey gets closer in time

[14��,18]. Failures of this value updating process may help

to explain failures of self-control, and treatments that

modify this representation may help improve self-control.

How accept–reject decisions are implemented
The key decision variable in accept–reject decision is

profitability: the gain weighed against the cost of the item,

including opportunity costs [5]. Profitability is compared

to a threshold, the average value of the environment. The

most straightforward way to implement an accept–reject

decision is to maintain a (dynamic) representation of the

profitability of the foreground option and a (stable) repre-

sentation of the profitability of the background and to

compare them [15��,19,20]. Control systems in the brain

then can modulate these representations regulate the

threshold for accepting a presented option [20,21�,22��].

Once an item is attended, accepting the option may be a

type of default action; rejecting it would then be an

alternative. If so, this framing would introduce an asym-

metry into binary choice. That asymmetry should be

visible in the brain, and indeed it is: the two option types

are associated with activation in the ventromedial pre-

frontal cortex (vmPFC) and dorsal anterior cingulate

cortex (dACC), for default and alternative, respectively

[19,23]. The relationship between coding and choice is

also dependent on accept–reject status; for example,
www.sciencedirect.com 
vmPFC encodes the value of the offer if it is accepted

and of the environment (negatively) if the offer is rejected

[19,24]. Moreover, lesions of vmPFC in macaques disrupt

the common tendency to repeat choices following large

rewards — that is (to speculate a bit) these lesions disrupt

regulation of the processes that determine the favored

default and disfavored alternative actions, or that select

them [25].

Presumably, then, choice is determined by competition

between these two systems. The role of dACC in encod-

ing the value of the alternative is also consistent with

recordings of single neurons there, which show encoding

of the rejected value on reject trials and of the delay —

which corresponds to the opportunity cost of the accept

decision — on accept trials [26]. And in a patch-leaving

task, in which the decision to reject an option builds over

several trials, responses of dACC neurons gradually

increase as the value of rejection rises [20]. These dis-

coveries about dACC offer a synoptic account of dACC

function that was not available from standard conflict and

comparator models based on conventional (non-foraging)

tasks [27,28]. These regions, then, especially the dACC

and the vmPFC, can be said to constitute the core of the

foraging survival circuits [4,29].

Are ostensibly binary choices really paired
accept–reject choices?
Binary choice is the very core of microeconomics and

understanding its neural basis is a central goal of neuroe-

conomics. Given the importance of accept/reject deci-

sions in foraging, however, some scholars have argued that

the binary choice is at least somewhat unnatural and in

some cases an artificial laboratory construct [7,30]. A

forager whose brain is evolved for single encounters may

treat the binary choice as two simultaneous accept/reject

decisions. Key evidence for this decision mechanism

comes from measures of reaction times and choice proba-

bilities [31–34]. An implication of these results is that

binary choice is better described as a paired race-to-thresh-

old than as a single drift diffusion between two bounds.

Another psychological limitation on binary choice is the

limited capacity of attention: we cannot bind abstract

features (like value) to objects (offers) in the absence of

attention, which is generally limited to a single spotlight

[35]. In a standard visual task with two spatially separate

options, the spotlight of attention likely follows the locus

of gaze or, sometimes, covert attention [36]. In more

abstract situations, such as when choosing between two

possible options that are out of view (e.g. a monkey

choosing which of two distant orchards to forage in),

the locus of attention likely shifts in a more abstract

manner, but still serially. Thus, it seems likely that when

options are presented simultaneously, they are nonethe-

less evaluated and compared serially. Key evidence for

this idea comes from a study that recorded ensemble
Current Opinion in Behavioral Sciences 2018, 24:1–6
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activity in orbitofrontal cortex (OFC) in a simultaneous

choice task [37��]. Neuronal ensembles rapidly oscillated

between two states corresponding to the two possible

options, presumably tracking the focus of attention. Fur-

ther evidence comes from the fact that, when attention is

artificially controlled (by controlling gaze), ventromedial

prefrontal cortex (vmPFC) and OFC preferentially track

the values of attended offers [38,39,40�,41,42��].

How can comparison occur in serial choice
models?
If attention alternates between single offers, and the brain

signals the value of the attended offer only, how can a

comparison occur? One possibility is that the brain com-

putes the relative, not absolute, value of the attended offer

(that is, the value difference or quotient). This relative

value can be seen as a normalized representation of the

value of the offer, but is sufficient to guide choice: if the

difference is greater than zero the attended option can be

selected. In other words, following appropriate normali-

zation, no comparison other than thresholding is needed

to implement the choice. There is evidence that value

representation in vmPFC is relative [38,39] and may be

relative in other areas as well (e.g. [43�,44–47]). To

implement choice, then, such normalized value represen-

tations must be subject to some downstream (or distrib-

uted) comparison-to-threshold process.

During serial shifts of attention, what is occurring during

each epoch of sustained attention on one option? One

possibility is that the brain is gradually accumulating

evidence in favor of or against selecting that option

[36,48–50�]. That evidence is presumably stochastic,

because it reflects the output of multiple noisy channels.

It seems likely that at least some of that sampling corre-

sponds to drawing recollections of stimulus and action

value mappings from memory [51��]. This demand for

memory is particularly likely to be required in contexts

where options are defined by two dimensions [45]. These

are then fed into one or more value buffers and compared

to a threshold.

Foraging suggests a unification of economic
and stopping decisions
An accept/reject decision is a choice between actively

changing the status quo or passively maintaining it and

continuing to search; accepting involves performing a

planned or primed motoric response; rejection involves

withholding it. In other words, an accept/reject decision

has much in common with a stopping decision. And

binary choice, by extension, has much in common with

a pair of interacting stopping decisions. By stopping

decision, I am referring to a class of decisions that is

seldom conceptually linked with economic choice

(except in the domain of self-control, e.g. [52]). Stopping

can refer, here, to a simple inhibition of a motor plan, but

can have a more abstract meaning, referring to a change in
Current Opinion in Behavioral Sciences 2018, 24:1–6 
strategy, even an abstract one, driven by observations that

the payoff structure of the environment has changed.

The speculation that economic choice has stopping as its

basis, if true, is important because the neural mechanisms

of stopping are relatively well understood, and applying

this understanding to economic decisions could rapidly

advance the neuroscience of economic choice [53–55].

Indeed, if economic choice ultimately boils down to

stopping, there is an opportunity for a “grand unified

theory” unifying the two types of decisions.

There is some tentative evidence that the neural circuitry

involved in stopping is overlapping with the circuitry

involved in economic decisions. The motor and premotor

cortex, for example, have clearly defined roles in stopping

decisions, and also have important and complementary

roles in economic choices [56,57�]. More broadly, at least

some evidence supports the idea that stopping is a dis-

tributed process that reflects activity of much of the

prefrontal cortex (among other regions, [55]); similar

arguments have been made for economic choice

[57�,58�]. In any case, future work on the relationship

between stopping and choice is needed. Progress in this

area promises to help shed light on important debates,

such as how economic choice relates to self-control

[59�,60].

Value as tentative commitment to a decision
Value is a construct that is convenient in economic

models, but may not be explicitly computed; evidence

that it is realized in the brain is equivocal [58�,61]. The

brain has not evolved to compute value and then use that

to drive choice; it has evolved to drive adaptive behavior

in the natural world [1�,3,56]. Indeed, a reasonable null

hypothesis would be that the brain, as an evolved system,

performs a gradual rotation from an input to an output

space without a special amodal value representation in a

middle layer. Such a rotation would lead to sensorimotor

information — that is, the details of the positions of offers

and actions leading to them, in ostensibly motor areas.

Recent evidence supports the idea that such signals are

indeed observed throughout the reward system

[40�,57�,62,63��,64]. What we call value, then, may really

a tentative commitment to accepting an offer, or, more

abstractly, to a proposition (cf. [65]). In early layers, that

proposition may be toward identifying the stimulus, in

middle layers, it may be toward signals that can influence

the action or the goal, and in later layers it may be toward

the action associated with choosing it [43�,56,57�,58�].
Future studies will be necessary to test this idea; such

studies are most likely to be informative if they are

ethologically relevant, that is, if they embed the deci-

sion-maker in as natural an environment as possible [1�].
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