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Beta activity in human anterior cingulate
cortex mediates reward biases

Jiayang Xiao1,2, Joshua A. Adkinson1, John Myers1, Anusha B. Allawala3,
Raissa K. Mathura1, Victoria Pirtle1, Ricardo Najera1, Nicole R. Provenza 1,
Eleonora Bartoli1, Andrew J. Watrous1, Denise Oswalt 1, Ron Gadot1,
Adrish Anand 1, Ben Shofty 4, Sanjay J. Mathew 5, Wayne K. Goodman5,
Nader Pouratian 6, Xaq Pitkow2,7,8, Kelly R. Bijanki 1, Benjamin Hayden 1 &
Sameer A. Sheth 1,2,5,7

The rewards that we get from our choices and actions can have a major
influence on our future behavior. Understanding how reward biasing of
behavior is implemented in the brain is important for many reasons, including
the fact that diminution in reward biasing is a hallmark of clinical depression.
We hypothesized that reward biasing is mediated by the anterior cingulate
cortex (ACC), a cortical hub region associated with the integration of reward
and executive control and with the etiology of depression. To test this
hypothesis, we recorded neural activity during a biased judgment task in
patients undergoing intracranial monitoring for either epilepsy or major
depressive disorder. We found that beta (12–30Hz) oscillations in the ACC
predicted both associated reward and the size of the choice bias, and also
tracked reward receipt, thereby predicting bias on future trials. We found
reduced magnitude of bias in depressed patients, in whom the beta-specific
effects were correspondingly reduced. Our findings suggest that ACC beta
oscillations may orchestrate the learning of reward information to guide
adaptive choice, and, more broadly, suggest a potential biomarker for anhe-
donia and point to future development of interventions to enhance reward
impact for therapeutic benefit.

One of the hallmarks of human behavior is the ability to associate
rewards with the stimuli that produce them1–3. The anticipation of a
reward can influence our decision-making process by overriding our
initial sensory judgments and subsequently altering our subjective
evaluation of a stimulus4–7. These alterations in judgment, though
sometimes suboptimal, can also be beneficial by biasing our behavior
in amanner that increases the likelihoodof obtaining greater rewards8.
A fundamental unresolved question in human neuroscience is,

therefore, what neural processes drive the learning, or association of
reward information, so as to bias subsequent decisions9,10.

Dysfunction of these reward association processes is a common
characteristic of several neuropsychiatric disorders, most notably
major depressive disorder11–15. Depression is a disabling disease char-
acterized by anhedonia, disengagement, and reduced enjoyment of
life16,17. Among its hallmarks is the diminished influence of reward
anticipation on decision-making18,19. Investigating the underlying
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mechanisms of this phenomenon is therefore important for the
development of innovative interventions aimed at providing ther-
apeutic benefit by enhancing the impact of reward20–22.

Several human electrophysiological studies have identified a
mediofrontal oscillatory component associated with positive feed-
back in both gambling task and reversal learning task, tasks that have
key features in common with our bias task. The increase observed in
these tasks is in the beta range and occurs 200 to 400ms after the
feedback informing the participant about the monetary gains23–27. It
has been proposed that this beta activity is generated in the pre-
frontal cortex; themost commonly inferred source site is the anterior
cingulate cortex (ACC). It is further assumed that the ACC then
transmits a fast motivational value signal, still in the beta band, from
the frontal cortex to downstream reward-related regions26. More-
over, beta activity in the cingulate cortex is of particular importance
in depression28–30. For example, a recent study showed that beta
activity best tracks depressive states, seen as a decrease in beta band
power during the first month of chronic stimulation, followed by an
eventual rise31. This result suggests that sustained, antidepressant
responses might involve increased beta band power after prolonged
stimulation.

Existing evidence suggests that associative learning processes
occur, in part, within specialized reward and control circuitry3,32. In
particular, the ACC is a notable hub region that is associated with both
reward and executive functions, and that has been linked to their
integration33,34. Crucially, extensive research highlights the importance
of the ACC in representing reward information and monitoring
rewarding outcomes, as well as in facilitating learning and enabling
strategic adjustments35–39. Moreover, altered activity in the ACC and
regions connected to it has been associated with depression40–46.

Anhedonia, the loss of interest and pleasure from normally
rewarding stimuli, is a cardinal symptom of depression and is often
inadequately treated by traditional antidepressants21,47. While indivi-
duals diagnosed with depression may exhibit a range of symptoms,
anhedonia stands out as one of two key symptoms required for a
diagnosis of major depressive disorder48. Moreover, it is prevalent in
other psychiatric and neurological disorders including substance use
disorder, bipolar disorder, schizophrenia, and Parkinson’s disease49–52.
To highlight the common dimensions underlying mental health dis-
orders, the National Institute of Mental Health provides a research
framework called the Research Domain Criteria (RDoC)53. Within
this framework, the probabilistic reward task (PRT) is a well-validated
task to objectively measure anhedonia. In this task, unequal frequency
of reward between two correct responses produces a response
bias towards the more frequently rewarded stimulus5. While prior
studies have shown that performance predicts depression severity,
the underlying electrophysiological basis of anhedonia remains
unclear6,53,54.

We recorded intracranial local field potentials (LFPs) from four
reward-related regions in human participants performing the prob-
abilistic reward task. In subjects with medically refractory epilepsy
undergoing intracranial seizure monitoring (“Epilepsy Cohort”, no
clinical diagnosis ofmajor depressive disorder), we find that enhanced
beta (12–30Hz) oscillations after decision choice in the ACC predict
stronger biasing and also track reward receipt. On the other hand, in
subjects with severe treatment-resistant depression (“Depression
Cohort”, i.e., a cohort undergoing intracranial monitoring as part of a
clinical trial studying depression; NCT03437928), both the behavioral
bias and the neural response towards rewarding stimulus are reduced.
These results suggest that ACC beta oscillations may reflect neural
processes that orchestrate the binding of reward and sensory infor-
mation to guide adaptive choice. Additionally, our findings imply that
these oscillations could serve as a potential biomarker for anhedonia,
paving the way for future research to develop targeted neuromodu-
latory interventions.

Results
Participants developed response bias towards the more
frequently rewarded stimulus
The Epilepsy Cohort consisted of 15 participants with medically
refractory epilepsy, but no diagnosis of a mood disorder, undergoing
intracranial seizure monitoring. These subjects performed a variant of
the probabilistic reward task (Fig. 1a)5. Each run of the PRT consisted of
three blocks of 100 trials. On each trial, following a fixation period, a
mouthless cartoon face appeared (0.5 s). Then a mouth appeared
(variable length; long mouth: 54mm, short mouth: 49mm) for 0.1 s
and then disappeared. Participants were asked to identify whether the
previously presented mouth was long or short. Participants received
no reward for an incorrect response and probabilistically received
either a reward (dollar sign) or no reward (empty rectangle of same
size and shape) for a correct response. The likelihood of receiving a
reward was fixed at either 60% or 20% depending on whether the
choice was designated as the rich stimulus or the lean stimulus.

The optimal strategy, in terms of correct performance and reward
accumulation, is to ignore the rich/lean status and choose based solely
on perceptual features (i.e., mouth size). The behavioral measurement
of this task was response bias, or bias towards choosing the rich sti-
mulus.Here, following the conventions of Pizzagalli et al., 2005,we use
the term response bias to indicate the extent to which behavior is
modulated by reinforcement history.

Epilepsy Cohort participants showed a response bias: they tended
to choose themore frequently rewarded stimulus more often than the
less frequently rewarded one. Response bias averaged across all par-
ticipants was larger than zero for all three blocks (Fig. 1b, one-sample t
test comparedwith zero, block1: p =0.036, block2: p = 0.0029, block3:
p =0.0061). Consistently, the accuracy for the rich stimulus was higher
than the accuracy for the lean stimulus (Fig. 1c, paired-sample t test,
block1: p = 0.026, block2: p = 0.0034, block3: p =0.0086). To assess
the impact of feedback from the previous trial, we compared choice
patterns following reward and no-reward outcomes (these analyses
include all choices, not just correct ones, Fig. 1d). When there was a
reward in the previous trial, the likelihood of choosing the same
response (meaning long vs. short) was significantly larger (paired-
sample t test, t = 5.9, p < 10−4), supporting the idea that the participants
have modified their behavior based on the previous feedback.

Rich stimulus induces larger ACC beta power during
delay period
We recorded from four regions in the Epilepsy Cohort: anterior cin-
gulate cortex (ACC), medial orbitofrontal cortex (mOFC), lateral
orbitofrontal cortex (lOFC), and amygdala (Fig. 1e, Supplementary
Table. 1).

We first analyzed the delay period (Fig. 2a), which extends 500ms
after choice. The neural activity during this period occurs after the
decision-making process. Cognitive effort typically occurs during the
decision-making process, as individuals engage in mental processes
such as evaluating options, weighing consequences, and selecting an
action. Therefore, we do not think that the difference in neural activity
between different options during the delay period, after the partici-
pant has already made the choice, should be strongly influenced by
cognitive effort. During this period, sensory information and reward
history can be integrated to generate value representations for stimuli,
enabling the brain to anticipate the potential rewards and potentially
promote learning55,56. We computed the average spectral power at six
major frequencies (delta, theta, alpha, beta, gamma, and high-gamma)
during the delay period (using the same definitions as in Xiao et al.,
2023). Considering the observation of beta activity during reward
processing and the importance of beta activity in depression, our core
experimental hypothesis was in favor of the beta band. Results from
the other five bands with Bonferroni correction were reported for
reasons of completeness.
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We found that beta power in ACC was greater for rich trials than
for lean trials during the delay period (Fig. 2b, linear mixed model,
t(stimulus) = 2.1, p =0.039, coef = 2.5, 95% confidence interval (95%
CI) = [0.12–4.8], analysis epoch: 0–500ms after choice). This difference
was limited to the beta frequency - the other five frequency bands did
not show any detectable difference (p >0.05 in all cases). Moreover,
the majority of channels exhibited greater beta power in response to

the rich stimulus than the lean stimulus (Fig. 2b). Specifically, we found
that event-aligned activity increases immediately after choice; this rise
was significantly larger following choice of the rich stimulus (Fig. 2c,
cluster-based permutation test, the significant cluster begins at 244ms
and ends at 293ms after the choice, number of permutations = 1000).

Interestingly, beta modulation in the lateral orbitofrontal cortex
was also significant before multiple comparison corrections (albeit in
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Fig. 1 | Task description, behavioral performance, and recording locations.
a Timeline of the probabilistic reward task. b Response bias averaged across all
Epilepsy Cohort patients. A positive response bias value indicates there is a pre-
ference for choosing the more frequently rewarded stimulus. Boxplots illustrate
quartiles at 25% and 75%, with horizontal lines denoting medians, and whiskers
extending to 1.5 times the interquartile ranges. n = 16 runs of task.One-sample t test
compared with zero, block1: p =0.036, block2: p =0.0029, block3: p =0.0061. ‘*’
representsp <0.05. cAccuracy for rich and lean stimuli averaged across all epilepsy

patients. Boxplots illustrate quartiles at 25% and 75%,with horizontal lines denoting
medians, andwhiskers extending to 1.5 times the interquartile ranges. n = 16 runs of
task. Paired-sample t test, block1: p =0.026, block2: p =0.0034, block3: p =0.0086.
‘*’ represents p <0.05. d Proportion of choosing the same response when there is a
reward or no reward following the response in the previous trial. n = 48 blocks of
task. Paired-sample t test, p = 3.9*10-7. ‘*’ represents p <0.05. e Intracranial record-
ing electrodes sample reward-relevant regions in Epilepsy Cohort patients. Source
data are provided as a Source Data file.
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the opposite direction, linear mixed model, t(stimulus) = −2.1, coef =
−3.3, 95% confidence interval (95%CI) = [−6.4 – −0.17], p =0.039). This
observation is notable given the hypothesized role of OFC in reward
learning processes, and given its close interconnections with
ACC32,57–60. This result suggests that reward biasing may reflect the
activity of a broader circuit consisting of ACC and lOFC, possibly
working together.

On the other hand, these effects were not brain-wide. Specifically,
the beta modulation in medial orbitofrontal cortex and amygdala was
not significant (t(stimulus) = −1.7, p =0.09, coef = −5.1, 95% confidence
interval (95% CI) = [−12.8–2.7], for mOFC beta, t(stimulus) = −1.3,
p =0.20, coef = −2.1, 95% confidence interval (95% CI) = [−4.4–0.3], for
amygdala beta, beforemultiple comparison corrections).Note that the
failure to achieve significance is not itself dispositive; indeed, we
report other evidence linking mOFC and amygdala in associations,
suggesting that ACC may be part of a larger network focused on
learning (see below).

Neural activity during delay period is correlated with
response bias
Next, we explored whether ACC beta activity plays a role in translating
internal representations of stimulus value into behavioral preferences.
Behavior preference ismeasured by response bias, with a stronger bias
indicating a larger preference towards rewards. Therefore, a correla-
tion with bias is the key indicator of learning the association between
the reward and the stimulus.

During the delay period, neural activity distinguished rich and
lean stimuli in blocks when biaswas higher than themedian, but not in
blocks when it was lower than the median (Fig. 3a, b). In the high
response bias condition, one significant cluster (cluster-based per-
mutation test, from 234ms to 322ms, number of permutations =
1000) was found, while no significant cluster was found in the low
response bias condition (Fig. 3b). These findings suggest that ACC
activity covaries with the degree of bias. This pattern is illustrated in
heatmaps showing the difference between the rich and lean stimuli at
each contact (Fig. 3a): in themajority of channels, a notable increase in

power towards the rich stimulus was observed in the high response
bias blocks. Conversely, the channels in the low response bias blocks
exhibited fewer discernible differences between the rich and lean sti-
muli. Furthermore, we found that average beta power showed a sig-
nificant difference between response to the rich and lean stimuli solely
within the high response bias blocks (Fig. 3c, t(stimulus) = 3.2,
p =0.0013, coef = 5.4, 95% confidence interval (95% CI) = [2.1–8.7]),
while no such distinction was observed within the low response bias
blocks (t(stimulus) = −0.44, p = 0.66,coef = −0.76, 95% confidence
interval (95% CI) = [−4.1–2.6]).

We then explored whether this neural activity during the delay
period correlates with the behavioral variable, response bias. The dif-
ference in beta power response towards the rich or lean stimulus is
positively correlated with response bias, but there is no significant
correlation in other frequency bands (Fig. 3d, e, r =0.38 for ACC beta,
p =0.013). The preference for choosing a more frequently rewarded
stimulus increases as the difference in beta responses increases. This
indicates that the ability to differentiate stimulus values, as reflectedby
ACC beta activity during the delay period, is associated with partici-
pants’ behavior.

These results clearly implicate ACC beta activity in processing
related to biasing. We found some evidence that OFC is likewise
involved in reward learning. Response bias was positively correlated
with the difference in beta power response towards rich or lean sti-
mulus in the orbitofrontal cortex (p =0.065 for mOFC beta, p =0.037
for lOFC beta before multiple comparison corrections).

Reward feedback elicits beta oscillations in the anterior
cingulate cortex
Recognizing the crucial role of ACC beta power in reward anticipation
during the delay period, next we tested whether this neural feature is
also involved in the response to reward feedback. The observation of
this feature during both the delay period and feedback period may
suggest a common neural mechanism underlying the evaluation of
stimuli and outcomes. The feedback period starts when either reward
feedbackor neutral feedbackappearson the screen and endswhen the
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Fig. 2 | Increase in ACC beta power in response to the rich stimulus during the
delay period. aDelay period starts from the button press and ends when feedback
appears on the screen.bDifferences in beta (12–30Hz) power between the rich and
lean trials are plotted at each sEEG contact. The color represents the t value com-
paring rich with lean trials. Red indicates greater power during rich trials. c Beta

power change during the delay period. Red indicates rich trials while blue indicates
lean trials. Trials are time-locked to the button press. The horizontal bar indicates
time points in the cluster that are statistically significant (p <0.05), as determined
by two-sided cluster-based permutation test. Data are presented as mean
values ± SEM. Source data are provided as a Source Data file.
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image disappears (duration: 1000ms) (Fig. 4a). We first computed the
average spectral power at the beta frequency during the feedback
period. To compare the activity between reward trials and neutral
trials, we used a two-sample t test to fit the spectral power for each

channel in the ACC. Remarkably, most channels across the ACC
exhibited greater beta power in response to reward feedback com-
pared to neutral feedback (Fig. 4b). When trials were time-locked to
the feedback onset, we observed a substantial increase in ACC beta
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Fig. 3 | Relationship between responsebias andneural activity during thedelay
period. a Differences in beta power between the rich and lean trials are plotted at
each sEEG contact for high response bias blocks or low response bias blocks.bBeta
power change during the delay period for high response bias blocks or low
response bias blocks. Trials are time-locked to the button press. Horizontal bar
depicts time points for which neural activity between rich trials and lean trials is
significantly different (two-sided cluster-basedpermutation test, p <0.05). Data are
presented asmean values ± SEM. cDifference in beta power in high or low response
bias blocks. Boxplots illustrate quartiles at 25% and 75%, with horizontal lines
denoting medians, and whiskers extending to 1.5 times the interquartile ranges.

n = 56 channels for low response bias blocks and n = 52 channels for high response
bias blocks. Linear mixed model, p =0.66 for the low response bias blocks and
p =0.0013 for the high response bias blocks. ‘*’ represents p <0.05. d Relationship
between response bias and the difference in reward response towards rich or lean
stimulus in all frequency bands. The statistical test for the Pearson correlation
coefficient is two-sided, and no adjustments were made for multiple comparisons.
e Correlation between neural activity and response bias in all frequency bands.
Center for the error bars represent the correlation coefficient. Error bars represent
a 95% confidence interval. p =0.013 for beta band. ‘*’ represents p <0.05. Source
data are provided as a Source Data file.
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power in response to reward (Fig. 4c, cluster-based permutation test,
the significant cluster begins at 194ms and ends at 907ms after the
feedback onset). This increase in the beta range reaches its peak
approximately 500ms after feedback onset.

To further confirm the effect of feedback type on the beta power
change, we used a linear mixed effect model. The average beta power
change during reward feedback was significantly larger than the
change observed during neutral feedback (Fig. 4d, linear mixed effect
model, t(feedback) = 12.6, p < 10−4, coef = 15.7, 95% confidence interval
(95% CI) = [13.3–18.2]). Overall, these results demonstrated that there
was a beta power increase in response to reward in the ACC. This
suggests that the ACC is engaged in the evaluation of both stimuli and
outcomes, potentially representing a common neural mechanism
underlying the assessment of reward values.

We found evidence that ACC is not alone in this process; indeed,
two other regions fromwhich we recorded, mOFC and amygdala, also
showed a systematic relationship between post-reward beta activity
and reward (mOFC: t(feedback) = −2.0, p = 0.04, coef = −3.4, 95% con-
fidence interval (95% CI) = [−6.8– −0.09], amygdala: t(feedback) =
−5.0, p < 10−4,coef = −9.8, 95% confidence interval (95% CI) = [−13.6 –

−6.0], before multiple comparison corrections). It is interesting that
amygdala showed a significant reversed relationship even after mul-
tiple comparison corrections; only ACC showed the same, positive,
relationship during both the post-choice and delay periods.

To further confirm the result, we performed additional analysis
using 12.5–30Hz as the frequency range for beta activity61. As in the
original result, we found that beta activity showed a discernible dif-
ferencebetween the rich and lean stimuli within the high response bias
blocks (Supplementary Fig. 1a), t(stimulus) = 3.1, p = 0.0021, coef = 5.1,
95% confidence interval (95% CI) = [1.8–8.3], while no such distinction
within the low response bias blocks (t(stimulus) = −0.13, p =0.90,
coef = −0.22, 95% confidence interval (95%CI) = [−3.6–3.2]). During the

feedback period, beta activity during reward feedback was sig-
nificantly larger than neutral feedback (Supplementary Fig. 1b,
t(feedback) = 12.9, p < 10−4, coef = 17.6, 95% confidence interval (95%
CI) = [14.0–21.1]). We used time-frequency maps to investigate how
various components of beta activity contribute to the overall effect
(Supplementary Fig. 1c, d). Our findings indicate a large effect in the
lower range of beta during both the delay and feedback periods,
suggesting that our results are predominantly influenced by
lower beta.

Reward biasing and its neural correlates in ACC are blunted in
depression cohort
In addition to the 15 patient Epilepsy Cohort, we also performed
intracranial recordings in a group of four individuals with severe
treatment-resistant depression (“Depression Cohort”) participating in
an NIH-funded clinical trial (NCT03437928, Fig. 5a)62–65. We analyzed
behavioral performance and electrophysiological patterns in these
depression patients. We did not observe any significant difference
between the accuracy for the rich stimulus and the accuracy for the
lean stimulus (Supplementary Fig. 2a, paired-sample t test, block1:
p =0.90, block2: p =0.94, block3: p =0.60). Response bias in depres-
sion patients was not significantly different from zero for all three
blocks (Supplementary Fig. 2b, one-sample t test compared with zero,
block1: p =0.93, block2: p =0.83 block3: p = 0.38). Compared to the
epilepsy group, we found that response bias was blunted in these
patients, especially in the last block of the task (Fig. 5b, two-sample t
test compared with epilepsy patients, t = 2.3, p =0.030). This indicates
that the behavioral preference towards more frequently rewarded
stimuli was reduced in this severely depressed group of individuals.
Then we investigated the neural response in ACC towards reward-
related stimulus in this cohort. Unlike in the Epilepsy Cohort, therewas
no significant difference towards rich or lean stimulus in beta activity
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Fig. 4 | Increase in ACC beta power in response to reward during the feedback
period. a The feedback period starts when the dollar bill or empty rectangle
appears on the screen and endswhen the feedback image disappears.bDifferences
in beta power between the reward and no-reward trials are plotted at each sEEG
contact. The color represents the t value comparing reward feedback with neutral
feedback. Red indicates greater power during the reward feedback. Only trials with
correct response are included in the analysis. c Feedback-aligned beta power
change averaged over trials and participants. Red indicates reward trials while blue

indicates correct trials with no reward. Trials are time-locked to feedback onset.
Horizontal bar depicts time points for which neural activity between reward trials
and no-reward trials is significantly different (two-sided cluster-based permutation
test, p <0.05). Data are presented as mean values ± SEM. d Average beta power
change across the feedback period. Boxplots illustrate quartiles at 25% and 75%,
with horizontal lines denoting medians, and whiskers extending to 1.5 times the
interquartile ranges. n = 65 channels. Linear mixed model, p = 1.8*10−36. ‘*’ repre-
sents p <0.05. Source data are provided as a Source Data file.
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during the delay period (Fig. 5c, linear mixed model, t(stimulus) =
−0.29, p = 0.77, coef = −3.9, 95% confidence interval (95%
CI) = [−3.0–2.2]). This result suggests a lack of reward-oriented antici-
pation in patients with severe depression. During the feedback period,
beta power exhibited a larger change during reward feedback com-
pared to that during neutral feedback (linear mixed model, t(feed-
back) = 6.7, p < 10−4, coef = 7.5, 95% confidence interval (95%
CI) = [5.3–9.7]). However,we observed that this beta power changewas

significantly smaller in the Depression Cohort than it was in the Epi-
lepsy Cohort (Fig. 5d, linear mixed model, t(feedback*group) = 4.7,
p < 10−4, coef = −8.2, 95% confidence interval (95% CI) = [−11.6 – −4.8]).
When analyzing the temporal response, we observed that the differ-
ence towards rich or lean stimulus was diminished across the delay
period in depression patients (Fig. 5e). When the trials were time-
locked to the onset of feedback, we found that the reward response in
depression patients was both reduced and delayed compared to the

anterior cingulate cortex

amygdala

lateral orbitofrontal cortex

medial orbitofrontal cortex 

a

b c d

* * **

e f

Fig. 5 | Difference in reward response betweenDepression Cohort and Epilepsy
Cohort. a Intracranial recording electrodes sample reward-relevant regions in
depression patients. b Response bias in Depression Cohort and Epilepsy Cohort.
Boxplots illustrate quartiles at 25%and75%,with horizontal lines denotingmedians,
andwhiskers extending to 1.5 times the interquartile ranges. n = 16 runs for Epilepsy
Cohort and n = 12 runs for Depression Cohort. Two-sample t test, block1: p =0.24,
block2: p =0.24, block3: p =0.030. ‘*’ represents p <0.05. c Average beta power
change across the delay period. Boxplots illustrate quartiles at 25% and 75%, with
horizontal lines denoting medians, and whiskers extending to 1.5 times the inter-
quartile ranges. n = 65 channels for Epilepsy Cohort and n = 36 channels for
Depression Cohort. Linear mixedmodel, p =0.039 for Epilepsy Cohort, p =0.77 for

Depression Cohort. ‘*’ represents p <0.05. dAverage beta power change across the
feedback period. Boxplots illustrate quartiles at 25% and 75%, with horizontal lines
denoting medians, and whiskers extending to 1.5 times the interquartile ranges.
n = 65 channels for Epilepsy Cohort and n = 36 channels for Depression Cohort.
Linear mixed model, p = 1.8*10−36 for Epilepsy Cohort, p = 1.6*10−11 for Depression
Cohort. ‘*’ represents p <0.05. eDifference towards rich or lean stimulus in the beta
activity across the delay period inDepression Cohort and Epilepsy Cohort. Data are
presented as mean values ± SEM. f Difference towards reward or neutral feedback
in the beta activity across the feedback period. Data are presented as mean
values ± SEM. Source data are provided as a Source Data file.
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Epilepsy Cohort (Fig. 5f). Apart from the original analysis using beta
activity, we also reported the result in other frequency bands for both
the Epilepsy Cohort and the Depression Cohort (Supplementary
Table. 2). These findings imply alterations in reward processing within
the ACC among individuals with depression.

Discussion
We obtained multi-site intracranial recordings from patients under-
going inpatient monitoring for either epilepsy or treatment-resistant
depression. Patients performed a perceptual discrimination task in
which rewards were stochastic and biased. We found that enhanced
beta oscillations in the ACC (and, less consistently, in regions con-
nected to it), correlate with a stronger biasing effect and track the
receipt of rewards. These results suggest that beta oscillations in the
ACC may be a neural signature of processes associated with reward
biasing, and especially the association of reward value with choice.
Both the behavioral bias and the neural response to rewarding stimuli
are diminished in patients with depression, highlighting the changes in
reward processing within the ACC in depression. Previous studies
have shown inconsistent results in behavioral findings during reinfor-
cement learning indepression, possibly arising from the heterogeneity
and stage of depression5,6,21,54,66–69. Given that increased anhedonia
levels are associated with greater illness severity and longer episodes,
the observed response bias difference in our study may be attributed
to the advanced stage and high severity of treatment-resistant
depression70.

Anhedonia, with its profound impact on an individual’s quality of
life, can create challenges in various aspects including relationships,
work, and daily functioning. Traditional antidepressants often fail to
adequately address this symptom21,47. Thus, gaining a deeper under-
standing of anhedonia is important for improving diagnosis and
treatment of depression. The perceptual bias task is the most com-
monly used task for the assessment of anhedonia, a major element of
clinical depression53. There are two reasons for this: first, the task has
direct face validity to the association of reward and action; second,
there is ample empirical evidence linking changes in behavior in this
task with anhedonia. It also has been used to assess reward learning
and feedback responsiveness in both rodents and humans71–74. Our
results, which include both correlations with the behavior in non-
clinically-depressed individuals and reduction in reward response in
individuals with severe depression, suggest that beta activity within
the ACC may be a biomarker for anhedonia. Such a biomarker has
many potential benefits, including the ability to improve diagnosis and
symptom monitoring. Moreover, they present an appealing target for
neuromodulatory trials, which could focus on altering ACC beta and
thereby reducing anhedonia. In our study, the average beta power
values were z-scored across trials, regardless of stimulus types within
each contact. Therefore, the smaller values in depression patients
indicate a lesser difference between conditions, not the absence of
beta activity overall. Monitoring this neural feature in a more natur-
alistic environment is essential for comparison with healthy controls
and crucial for the development of potential treatments. The limited
enrollment of only four depression patients in our study is due to the
unique clinical trial using an inpatient intracranial platform for therapy
development. Future studies with larger sample sizes will be necessary
to extend the generalizability of ourfindings to the broader population
of individuals with depression. In comparison to traditional ques-
tionnaires, continuous and passivemonitoring of this neural feature in
patients requires less effort from them, offers greater objectivity, and
facilitates timely intervention. Future work will need to determine the
time course of changes in this potential biomarker relative to those of
depressive symptoms.

While certain symptoms like tremor or stiffness in Parkinson’s
disease exhibit rapid moment-to-moment fluctuations, depressive

symptoms are generally characterized by a more gradual and pro-
longedevolutionover the course ofdays tomonths75–77. Therefore, this
biomarker holds the potential to offer clinicians a valuable temporally
dynamic signal about the individual’s ongoing state and the transitions
they experience. Such a signal could alert clinicians to be watchful and
influencedecisions regarding potential therapeuticmaneuvers such as
medication adjustments, behavioral interventions, or modifications in
stimulation delivery. Further investigation is needed to assess its
effectiveness and practical application. Current technology enables
the monitoring of beta activity at the stimulation site in freely moving
Parkinsonian patients, allowing for the precise control of stimulation
delivery78–80. Similar to this approach, it is possible to track the
instantaneous power of the beta band in depression patients by deep
brain stimulation systems with sensing capabilities. While the intra-
cranial signal provides more precise anatomical information via direct
contact with brain tissue, future studies should aim to validate and
replicate our observation of ACC beta activity using non-invasive
approaches. Wireless EEG headsets may be necessary to achieve more
frequent and convenient measurements, while the implementation of
advanced source localization techniques can enhance anatomical
precision. Advancements in these areas can facilitate broader appli-
cation across patient populations.

These results also have implications for our understanding of the
role of the ACC. The ACC is thought to play a crucial role in reward
processing. In non-human primates, individual ACC neurons process
both experienced and fictive rewards to dynamically guide changes in
behavior. Monkeys with ACC lesions are impaired in using rewarded
trials to sustain the selection of the correct object, emphasizing the
importance of the ACC in reward-based decision-making81. Our study
reveals that beta oscillations in the ACC, which represents reward
outcome, are also elicited by rich stimuli and are correlated with
behavioral preference. Previous electrical stimulation studies suggest
that dACC plays a crucial role inmotivation and drive82,83. In our study,
we observed an increase in ACC activity when participants anticipated
a reward. This anticipation of reward could potentially translate into an
increased willingness to persevere and exert effort to obtain the
reward. These stimulation studies also imply that adjacent brain
regions may fulfill unique roles. Electrical stimulation of the anterior
midcingulate cortex induces a ‘will to persevere,’ whereas stimulating
subgenual or retrosplenial cingulate regions fails to evoke perceptual
or behavioral responses. Further investigations with increased
recording sites in the ACC are necessary to clarify the roles of its
various subregions in reward processing. These findings provide fur-
ther support for the importanceof the ACC in reward learning. Indeed,
these results are consistentwith previous theories linking theACCwith
cognition related to reward in general and to reward-mediated learn-
ing specifically34,81,84,85. In experiments involving both monetary gains
and losses, research has demonstrated that an increase in theta power
is associated with losses, while an increase in beta power is associated
with gains23,25,27. Aligned with prior findings, our study showed a rise in
beta activity within the ACC following positive feedback. Future stu-
dies could investigate ACC activity during a similar task that incorpo-
rates negative feedback for a more comprehensive understanding.

The alignment of reward information with other forms of sen-
sorimotor processing involves the dynamic and flexible linking of
inherently disparate pieces of information26,86. Several theories high-
light the potential involvement of high-frequency oscillations in
orchestrating learning and binding processes87–92. Our results indicate
that successful reward biasing on sensorimotor decision-making is
associated with specific enhancements in beta oscillatory activity
within the ACC and areas in its local circuit. This finding suggests that
ACC beta activity could play a key role in linking rewards to various
cognitive areas. Future studies might explore how altering this activity
could impact cognitive and emotional well-being.
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Methods
Participants
Fifteen participants (eight males and seven females, mean age 39
years, range 19–60 years) undergoing invasive monitoring for the
treatment of refractory epilepsy at Baylor St. Luke’s Medical Center
(Houston, Texas, USA) participated in our study. These participants
did not carry a diagnosis of major depressive disorder. Implantation
sites were determined solely by the clinical team for localization of the
seizure onset zone. The Institution Review Board at Baylor College of
Medicine approved this study (IRB protocol number H-18112), and all
participants provided verbal and written consent to participate.

Four patients with treatment-resistant depression (twomales and
two females,mean age 42 years, range 37–58 years) whowere enrolled
in an early feasibility trial (NCT03437928) also participated in our
study. This trial of individualized deep brain stimulation (DBS) guided
by intracranial recordings is funded by the NIH BRAIN Initiative (UH3
NS103549) and approved by the Institution Review Board at Baylor
College of Medicine (IRB number H-43036). These individuals did not
carry significant psychiatric comorbidities based on the trial’s exclu-
sion of schizophrenia, bipolar disorder, personality disorders, and
neuro-developmental disorders, as these conditions may impact the
study results. Additional details regarding the exclusion criteria can be
found: https://clinicaltrials.gov/study/NCT03437928#participation-
criteria. Each patient was implanted with permanent deep brain sti-
mulation leads for stimulation delivery as well as with temporary sEEG
electrodes for neural recordings. In our study, two patients used
antidepressant medication, while the remaining two patients did not
receive any medication. The trial protocol requires patients to main-
tain a stable dose of medication for at least onemonth before surgery,
and no alterations are made to their medication during the in-patient
monitoring period.

In this study, we focus on the sEEG recordings from reward-
relevant regions. Following the surgical implantation of electrodes,
patients underwent around one week of inpatient monitoring.
Throughout this time, we conducted probabilistic reward task while
simultaneously recording dense neural activity.

Probabilistic reward task
Probabilistic reward task (PRT) is a task for the investigation of reward
processing. Each run of the PRT consists of 300 trials, divided into 3
blocks of 100 trials. All three blocks were performed on the same day,
and a short break was allowed between the blocks. Each trial started
with the presentation of a fixation cross in the center of the screen for a
random duration ranging from 700 to 900ms. A mouthless cartoon
facewas thenpresented for 500ms followedby thepresentationof this
face with either a shortmouth or a longmouth for 100ms. Participants
were then asked to identify which type of mouth was presented. Either
reward or neutral feedback was presented for 1000ms after a random
delay interval ranging from 500 to 1000ms. For each run, we set one
type of stimulus (either the short or long mouth) as the rich stimulus.
Theprobability of reward for rich stimulus is three timesmore frequent
than for lean stimulus (the other kind of mouth). If a participant didn’t
correctly identify the stimulus in a trial where reward feedback was
scheduled, the feedback was postponed until the next accurate iden-
tification of the same stimulus type. Therefore, the consistency of
reward feedback frequency was maintained across all participants for
each stimulus type. This approach is the same as that used in the earlier
study with the same task5. The likelihood of receiving a reward was set
at either 60% or 20%, depending on whether the choice was categor-
ized as the rich stimulus or the lean stimulus. Reaction timewas defined
as the time between stimulus presentation andparticipant response. As
a previous study using PRT5, trials with reaction time that were too
short (<150ms), too long (>2500ms), or were considered an outlier
response (exceeding mean ± 3 SD), were excluded from further analy-
sis. The taskwas implemented inMATLAB (TheMathworks, Inc., Natick,

MA) using Psychtoolbox-3. For behavioral analyses on the PRT task, the
main variable of interest is response bias, which measures the sys-
tematic preference for the response associated with more frequently
rewarded (rich) stimulus. Response bias can be calculated based on the
number of correct or incorrect trials to the rich and lean stimuli.

logb =
1
2
log

richcorrect � leanincorrect

richincorrect � leancorrect
ð1Þ

Previous studies suggest that response bias is inversely related
to current anhedonic symptoms in unselected adults. It is also blunted
in depression patients and is improved by pharmacological
treatments53,54.

Electrode localization
Patients underwent brain magnetic resonance imaging (MRI) before
surgery and computed tomography (CT) after implantation. To
identify the precise anatomical position of implanted electrodes, we
co-registered the pre-operative T1-weighted MRI scans with the post-
operative CT scans. Automatic cortical reconstruction was performed
on the preoperative T1-weighted MRI using Freesurfer tools93. Func-
tional Magnetic Resonance Imaging for the Brain Software Library’s
Linear Image Registration Tool (FLIRT) was employed to align the
postoperative CT data with the preoperative T1-weighted MRI94. Elec-
trode positions weremanuallymarked using the co-registered CT data
in BioImage Suite v3.5b1 and plotted into the native MRI space95. An
expert reviewer then examined the images to identify brain regions
and determine whether the contact was in gray or white matter.
Contacts determined to be inwhitematter were excluded from further
analysis. Detailed procedures have been described elsewhere62,65.

Data acquisition and preprocessing
Neural signals were recorded during the probabilistic reward task.
Signals were recorded with sEEG electrodes at 2000Hz using a Cere-
bus data acquisition system (BlackRockMicrosystems, UT, USA) with a
bandpass of 0.3–500Hz (4th order Butterworth filter). We visually
inspected raw signals for the presence of recording artifacts and
interictal epileptic spikes. Channels with excessive noise were exclu-
ded to prevent noise from spreading to other channels through re-
reference. Signals were notch filtered (60Hz and its harmonics) to
reduce line-noise artifacts and re-referenced throughbipolar reference
to reduce the effects of volume conduction96. We then down-sampled
referenced signals to 1000Hz.

Spectral power analysis
We performed Hilbert transform to estimate spectral power in six
different frequency bands: 1–4Hz (delta), 4–8Hz (theta), 8–12 Hz
(alpha), 12–30Hz (beta), 35–50Hz (gamma) and 70–150Hz (high-
gamma). Spectral power values for each trial were calculated by
averaging the squared magnitude of the Hilbert transform decom-
position. For the delay period, spectral power was averaged across a
time window beginning at behavioral response and ending at 500ms
after choice. For the feedback period, the mean spectral power was
calculated across a time window beginning at feedback onset and
ending at feedback offset, which was set at 1000ms after feedback
onset. The spectral power values were then normalized as a percent
change relative to the baseline, which was the fixation cross period at
the beginning of each trial. To ensure data quality, any value that
deviated by more than three standard deviations from the mean value
was considered an outlier and excluded from further analysis. Lastly,
the values were z-scored within each contact for visualization.

Data visualization in the template brain
Contacts were projected onto the MNI space and visualized using the
open-source software RAVE (R Analysis and Visualization of iEEG)97.
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To analyze the data during the delay period, a two-sample t test was
employed to generate a t value for each contact. These t values, which
compared the average spectral power after the rich and lean stimuli,
were then plotted onto the template brain. Similarly, for the analysis of
the data during the feedback period, a two-sample t test was used to
compare reward feedback with neutral feedback, and the resulting t
values were plotted at each contact.

Linear mixed effect model
Statistical analyses on data from all channels mainly focused on the
effects ofdifferent conditions on the spectral power change.Weused a
linear mixed effect model to quantify the effect of stimulus type or
feedback type on the power change. We modeled stimulus type or
feedback type as afixed effect, and channels andparticipants as nested
randomeffects. The formula for neural activity during the delayperiod
is Power ~ stimulus + (1|Subject/chan) while The formula for neural
activity during the feedback period is Power ~ feedback + (1|Subject/
chan). This model was used for the control group and the depression
group separately. To further test whether the power change was
modulatedby the group type,we includedboth the group type and the
feedback type as fixed effects in the linear mixed effect model and
calculated the corresponding p value. The formula used in this analysis
is Power ~ feedback+grouptype+feedback*grouptype + (1|Subject/
chan). The p value associated with each parameter is derived from a
two-sided test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Processed data is provided at the following address: https://osf.io/
t3usq/. The raw intracranial EEG data are available upon request for
reasons of patient confidentially. Source data are provided with
this paper.

Code availability
Code used in this study is available under: https://osf.io/t3usq/.
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