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Self-control refers to the ability to deliberately reject tempting options and

instead select ones that produce greater long-term benefits. Although some

apparent failures of self-control are, on closer inspection, reward maximiz-

ing, at least some self-control failures are clearly disadvantageous and

non-strategic. The existence of poor self-control presents an important evol-

utionary puzzle because there is no obvious reason why good self-control

should be more costly than poor self-control. After all, a rock is infinitely

patient. I propose that self-control failures result from cases in which well-

learned (and thus routinized) decision-making strategies yield suboptimal

choices. These mappings persist in the decision-makers’ repertoire because

they result from learning processes that are adaptive in the broader context,

either on the timescale of learning or of evolution. Self-control, then, is a

form of cognitive control and the subjective feeling of effort likely reflects

the true costs of cognitive control. Poor self-control, in this view, is ultimately

a result of bounded optimality.

This article is part of the theme issue ‘Risk taking and impulsive behaviour:

fundamental discoveries, theoretical perspectives and clinical implications.
1. Introduction
Poor self-control is inimical to mental and physical health and to life success; it is

associated with poverty, obesity, loneliness and other unwanted states [1,2]. It is

both a symptom and a cause of diseases that increase mortality, such as addiction,

depression and obsessive–compulsive disorder (e.g. [3–5]). Because failures of

self-control are costly, the ability to exert self-control can confer evolutionary

benefits and ought to be subject to strongly negative selection pressure. The ubi-

quity of poor self-control, then, poses an important riddle: why has natural

selection not endowed us with perfect self-control?

For present purposes, I define self-control as deliberately avoiding the choice

of a tempting option so as to choose an alternative that produces greater long-term

benefits. The main reason I use this definition is because it brings to the fore

the evolutionarily puzzling aspects of self-control failure. This definition is not

universally shared, but it is, from my reading of the literature, the closest to a con-

sensus view available (e.g. [6–10]). Some other definitions include strategies that

avoid tempting contexts; my definition treats these as outside the bounds of self-

controlled behaviour [11,12]. Other scholars have considered that choices

appearing to reflect poor self-control may have adaptive outcomes [13–17].

Such choices are interesting, as they provide insight into the evolution of cognitive

faculties. However, they are not relevant to the central question I consider here, as

they are reward-maximizing, and thus adaptive, and not evolutionarily puzzling.

One important caveat in this definition is that to be called a test of self-control, the

decision-maker must know the potential outcomes (or the range of outcomes in

the case of stochastic decisions).

It is not obvious why perfect self-control would be difficult to evolve. Self-

control decisions are, ostensibly, just like another mental operation. Consider,

for comparison, the example of saccadic eye movements, which, like self-control

decisions, are regulated by the brain (including the prefrontal cortex) and are
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subject to volitional control [18]. We make saccadic eye move-

ments three to four times per second during our waking hours,

without any sense of fatigue, throughout our lives. When

something surprising appears in the visual field, we look at it

without succumbing to the temptation to procrastinate for sev-

eral days (as we might with more conventional self-control

problems, such as paying a bill or reviewing a manuscript).

We do not ever feel the temptation to cheat or cut corners; for

example, we do not move our eyes only 80% of the way

towards a target, as we might with a diet. Our oculomotor

control systems, like our respiratory control systems, our form

vision systems and many others, constantly function at a high

level with rare failures. So what makes economic deci-

sions different? Why are so many of our daily value-based

decisions subject to large and small self-control failures?
Soc.B
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2. Some well-known approaches to self-control
do not help us understand why it fails

One view of self-control, dating back at least to William James

in the late 1800s, sees it as the result of the competition between

two systems [19–22]. These are often known as the hot and

cold systems. The hot system advocates for impulsive choices

and the cold system advocates for controlled ones [23]. These

two systems have at least some affiliation with Freud’s idea

of the id and superego, respectively [24]. And in a more math-

ematical guise, this view has direct parallels to the beta and

delta systems [25]. The hot versus cold idea is supported by

neuroscientific results showing a regulatory system (often

dorsal and lateral) inhibiting a basic value system (often ventral

and medial, e.g. [25–27]). In this two-systems view, self-control

failure reflects a failure of the cold system to overrule the

hot system. Despite its appeals, this view does not provide

any explanation for why the hot system would ever win.

That is, it simply allows for a restatement of the core mystery

of self-control.

Another important view sees self-control as an economic

decision—a comparison between two differently valued

options—that is not different in any substantial way from

other economic decisions ([12]; see also [28–30]). While self-

control decisions clearly are a type of economic decision, they

are of a special type. The strict similarity view ignores the

most important thing about self-control: it can fail. And those

failures are not just owing to noise. Many cognitive processes

(including economic choice) are susceptible to errors but these

errors are owing to noise and are independent of choices. By

contrast, self-control failures always go in the same direction:

succumbing to temptation. This distinction is clearest in the

case of intertemporal choice tasks. In standard implementations

of these tasks, the preference for the shorter–sooner option

most often indicates poor self-control [31]. But on trials in

which the shorter–sooner option provides a higher long-term

reward rate than the larger–later alternative, then the choice

of the larger–later option will yield negative discount rates.

This ‘negative self-control’ is much rarer than the alternative.

Another limitation of the economic model is that it does not

readily explain the ego-dystonic nature of self-control failures.

That is, it cannot explain why failure, or even the prospect of it,

would evoke negative emotions (often severe ones), when

economic mistakes do not (for a similar argument, see [32]).

Most critically for my concerns here, the economic view

cannot explain the high prevalence of self-control failure if it
is just a type of miscalculation. Evolution has finely honed

our minds to make good decisions [33,34]. It has endowed us

with abilities to do cost–benefit computations that are much

more complicated than many self-control problems require.

For example, our brains can simultaneously track multiple fluc-

tuating variables at many timescales [35–37]; we can detect

subtle changes in probability [38]; we can anticipate others’

strategies several levels deep [39]. Time biases do not seem to

be the problem either. In foraging tasks, at least, many animals,

including humans, can optimize reward rate to within a few

percentage points of optimal [34,40,41].

A third, not entirely distinct, view equates self-control

directly with patience or with withholding a response

[17,42–44]. Patience is a time-centric view of self-control, and

it equates poor self-control with an unwillingness to wait

extended periods of time to obtain better rewards. The patience

perspective generally equates poor self-control with action and

good self-control with inaction. Asking why patience fails

involves asking how action (which would presumably be

costly) accidently overcomes inaction. Prima facie, not moving

one’s muscles would seem to require very minimal amounts

of energy. (This ignores the opportunity costs of time, which

are excluded from conventional definitions of self-control fail-

ure). But why would patience be costly? This perspective is

especially puzzling in light of the large number of examples

of evolved patience. For example, a male rhesus macaque can

wait months to gain weight in preparation for the fights associ-

ated with mating season [45,46]. There is no obvious reason to

think these apparently lazy males are exerting months of

difficult self-control.
3. Evaluating some theories about why self-
control fails

Perhaps the most influential explanation for self-control failure

is the idea that control relies on a limited internal resource

[8,20,24,47]. In the influential strength model, or ego depletion

model, self-control is demanding in the same way that muscu-

lar movement is [9,48]. That is, self-control requires effort, it

depletes some central reserve and improves with practice

[24,49,50]. Glucose was proposed as this energy store; perhaps

self-control requires mental activity that is metabolically costly

[50–52]. This theory has a natural evolutionary explanation

because energy is an obvious limiting factor for any organism.

One limitation of this view is that there is no obvious neuro-

scientific reason why self-control is metabolically costly.

Another is that the strength theory is not empirically sup-

ported. Meta-analyses and large replications indicate that

small study bias and publication bias likely led to over-inflated

estimates of depletion effects, which may not exist at all

[53–57]. Likewise, the idea that glucose serves as the reservoir

has been successfully challenged [55,58,59]. This is not to say

that self-control does not vary systematically, or flag with

fatigue, just that ego depletion cannot account for most of

its effects [60]. In any case, the prominent failures of the

ego depletion hypothesis are an important motivator for the

questions I raise here.

Another idea is that more self-control requires a larger brain

[15,61]. Failures, in this view, come from insufficient mental

resources—associated with brain volume—and the tradeoffs

in self-control are the same as those associated with brain

size. Support for this view, for example, comes from a major
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study comparing self-control in thirty-six species showing that

absolute (and not relative) brain size predicted self-control

strength across species [61]. Likewise, Stevens examined inter-

temporal choice performance in 13 primate species ([15]; see

also [62]). Among other variables, absolute brain size (and

again, not relative brain size) predicted self-control. These find-

ings suggest that something about larger brains allows us to

wait longer.

However, the specific tasks used in both the studies have

been challenged as measures of self-control [13,16,63,64].

Even if these tasks measure a combination of self-control and

other processes, the evidence linking brain size to self-control

may instead demonstrate a link to other factors. Indeed,

brain size correlates with many other factors that may contrib-

ute to preferences in these tasks, such as metabolic rate and

lifespan [15]. More fundamentally, these studies do not offer

an explanation of why larger brains would lead to more self-

control. While it seems reasonable that larger brains lead to

complex mental abilities like general intelligence and social

intelligence, self-control would seem to be computationally

simple [65–67]. It just requires a computation and comparison

of reward rates associated with each option. Animals, even

ones with small brains, are highly adept at estimating and max-

imizing reward rates [34,68]. Even bees and ants, which have

minimal nervous systems, can do it nimbly [69].

Yet another explanation for poor self-control has to do

with the importance of prospection for self-control [70]. Specifi-

cally, it has been argued that episodic foresight—the ability to

simulate the future and reason about it—is critical [71,72].

According to this view, failures of self-control result from fail-

ures to prospect. This viewpoint has several limitations,

however. Most importantly, self-control is more widespread

in the animal kingdom than prospection is [61]. For example,

a rat can exhibit self-control but likely has no episodic foresight

[65]. Moreover, while self-control may benefit from pros-

pection, it is not essential [42,73,74]. Indeed, it may be that

prospection is critical for flexible self-control, but not for

successful simple self-control itself [70].

Finally, several scholars have focused on the adaptive

benefits of poor self-control [16,17]. Thus, for example, patience

entails both an interruption risk and a collection risk

[13,14,75,76]. Both of these risks increase the opportunity cost

of waiting relative to selecting the immediate option [14]. Like-

wise, self-control may be fit to the environment. For example,

marmosets and tamarins have diverged relatively recently

but have very different ecological niches. Insectivorous tamar-

ins move quickly to catch their prey and discount time steeply

(and thus ostensibly have poor self-control); marmosets, which

specialize in tree-sap exudate, need to be patient to feed and are

so, but they discount space steeply (but, by conventional defi-

nitions, have good self-control). This approach can explain

variations in self-control observed across species, including

primates [77–80].

This perspective is valid and is probably at least partially

correct (but see [81]), but it does not help us with the evolution-

ary puzzle that interests us here. That is, if a smaller–sooner

reward offers a larger expected rate of intake, then choosing

it, by my definitions here, is good—not poor—self-control. In

other words, if an idealized perfectly self-controlled decision-

maker would make the same choices, we cannot—based on

behaviour (which is all we can measure in animals)—call it a

self-control failure. And in the case that self-control inarguably

fails, as in a macaque that chooses smaller–sooner options more
than interruption–collection risk indicates, the adaptive fit

theory does not provide any explanation.
4. The intertemporal choice task
The intertemporal choice task has long occupied a central place

in the self-control research programme [29,31,44,82–86]. This

task, which is widely used in both humans and non-human

animals, involves a series of choices between options that

differ in delay and magnitude. Successful self-control is

defined as the selection of a larger option with a greater

delay or effort cost over a smaller but cheaper–sooner one.

Non-human animals generally show discount factors with a

half-life (i.e. discount factor, k) of a few seconds; humans

show a wider range, from these short timescales to factors in

the range of weeks to months, but are still impulsive [86–88].

The high discount factors typically observed in the intertem-

poral choice task strongly violate the principles of adaptedness

[16,17,37,89,90]. That is, animal decision-makers that discount

on the order of seconds could not possibly negotiate simple

tradeoffs necessary to survive in the world. For a monkey

with a very low (i.e. patient) discount rate of k ¼ 0.05, the sub-

jective value of an option that is only 20 s away would be

reduced by half of its true value. An option that requires

2 min to obtain would have essentially no value. This animal

obviously could not make good decisions and survive outside

the laboratory. Indeed, strong arguments have been made

that the intertemporal choice task is different in key ways

from tasks animals are likely to have faced in their evolved his-

tories [13,84,89,91,92]. Measures of time preferences in more

naturalistic tasks produce order-of-magnitude improvements

in measured self-control; that is, animals seem to have better

self-control if it is measured differently [16,37,40–42,89,92–94].

At a minimum, these results challenge the external validity

of the form of self-control measured by the intertemporal

choice task [64]. Why would the task lack validity? Even

decision-makers with perfect self-control will show apparent

self-control failures if they misunderstand the task [16,89].

For example, most implementations of the intertemporal

choice task use a post-reward buffering structure to avoid

‘cheating’ strategies of choosing the smaller–sooner reward

to get to the next trial sooner. But this stratagem only works

if the animal fully understands the structure of the task. Failure

to correctly understand the buffering structure will produce

apparently poor self-control in a maximizing forager [64,92].

Most animals likely either misunderstand or misapply this

element of the task (e.g. [16,85,95–97]).

There is a second problem that limits the interpretability

of the intertemporal choice task. The traditional definition

of poor self-control holds, in essence, that poorly controlled

decision-makers will overweight time relative to reward.

But decision-makers with poor self-control may more readily

overweight the reward dimension relative to the time dimen-

sion [63,98,99]. The presence of an option that produces a

large amount of food is a strong tempter [100]. Indeed, the

temptation to seek food and ignore costs would seem to be

an archetypical self-control problem. Decision-makers who

succumb to the temptation to choose the larger amount

will, in a typical intertemporal choice task, have—by

conventional definitions—a surfeit of self-control [101].

The human intertemporal choice task is not usually

implemented with adjusting buffers and does not usually
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use primary rewards like food (but see [37,102,103]). As such,

it does not have the same problems as the animal version

does. Nonetheless, the relevance of the task to human self-

control has been questioned. First, the external validity of

the task is quite low, compared to other self-control tasks

such as the BART [104]. Second, humans exhibit several

anomalies that cannot be explained through the principle of

discounting (reviewed in [86]). For example, in many cases,

humans and animals prefer sequences of rewards in which

value increases over time to sequences in which value

declines [40,86,105–107]. Indeed, it appears that humans

preferentially use heuristic strategies that result in

discounting-like behaviour without discounting [108].
 rans.R.Soc.B
374:20180139
5. Towards a cognitive control-based theory:
three examples

In moving towards considering the evolutionary causes of

poor self-control, is it helpful to begin with a few concrete

examples. The first comes in the form of drugs and alcohol.

These are common sources of self-control problems, affect a

large number of people and can have deadly consequences.

They are clearly ego-dystonic in many cases and clearly resist

even very serious and costly efforts to abstain. So, why have

we not evolved the ability to resist? Notably, most drugs, at

least in their potent modern forms, were not present in the

environment of evolutionary adaptedness (EEA). Most addic-

tive drugs (i.e. those that work on reward pathways) were

first made available within the past few centuries. The indus-

trial revolution has led to new techniques for purifying and

delivering the drugs such that today’s drugs of abuse are

more potent and addictive than they have been at any previous

point in our evolutionary history. For example, although alco-

holic drinks were likely fermented several thousand years ago,

until recently, they had a relatively low alcohol content. So

addictive drugs work by taking advantage of brain communi-

cation networks that were evolved in an environment without

them. From a necessarily slow evolutionary perspective, addic-

tive drugs are simply a very novel danger to which we have not

yet evolved a solution. Overcoming the temptation to consume

drugs and alcohol then requires making use of general-

purpose cognitive faculties. Drugs, then, constitute something

of an edge case—we have not evolved mechanisms to over-

come drugs and are forced to use—as an inferior backup—

our non-specialized cognitive systems.

A second example comes from dieting. Consider that one

of the more successful laboratory paradigms in humans has

been the diet choice task, in which poor self-control is defined

as choosing the tastier but less healthy item (e.g. [27]).

Human food resources underwent major shifts at the time

of the agricultural and then industrial revolutions—both

too recent to have had major effects on the evolution of cog-

nition. In other words, the diet available in the EEA was

sufficiently limited that dieting was probably not necessary.

Dieting, then, likely can only be implemented by the use of

deliberate cognitive resources, which conflict with the

canalized and inflexible processes that lead us to seek high-

calorie food. Tempting food, then, works in some ways like

drugs—we have not evolved specialized mechanisms to

deal with it and must make use of a general cognitive system.

A third example comes from a trio of tasks that are often

used in animal studies of self-control. In reverse contingency
tasks, animals must point to one of two rewards in order to

get the other [16,100,109–115]. This task is quite difficult but

trainable in some animals. In accumulation tasks, a reward is

available at any time but builds up the longer the animal

waits. Gaining a larger reward involves inhibiting the taking

of the reward, as that would end the accumulation process

(e.g. [116–120]). Finally, exchange tasks require an animal to

keep a small reward in their possession for a period of time

before trading it back to the experimenter for a bigger reward

[121,122]. One thing that unites these tasks is that they make

use of food and not symbols that represent it. Moreover, to

overcome self-control, the animal must do something that is

normally inimical to food receipt. Thus, they involve overrid-

ing low-level programming aimed at maximizing caloric

intake by the use of deliberative overriding systems.

In these three examples of self-control, animals must use

general cognitive mechanisms to perform the controlled

action and override strong tendencies. These tendencies

may be learned through evolutionary time, as in the innate

drive for sweet and fatty foods. Or they may reflect the

need to override strongly learned action patterns, as in the

case of exchange tasks. In any case, what unites these clear

self-control examples is the competition between a general

cognitive decision-making system and specialized (either

learned or hard-wired) decision-making systems.
6. Defining self-control as a form of cognitive
control

Self-control is the result of a conflict that arises when compet-

ing desires occur. The co-occurrence of both desires requires

arbitration. Failure of self-control occurs when one desire—

the one inconsistent with long-term goals—wins. The other

desire—the one associated with poor self-control—wins

because it has been given extra heft in the competition,

either by evolution or by learning processes.

The brain uses sensory, visceral and learned information to

guide the adaptive selection of actions [123]. I refer to this pro-

cess as sensorimotor transformation. When a certain

sensorimotor transformation is common, the brain processes

it in a more efficient way. I will refer to this as automatization

[7,8,124–126]. For example, the first time I follow a route across

a new campus, it requires attention and dominates awareness.

However, if I walk the same path every day, it rapidly becomes

automated in my mind, leaving my awareness free to wander

or perform other cognitively demanding activities.

Automatization carries several very useful benefits

[7,126]. Automatic responses are faster. They are less variable

and more accurate. They are less susceptible to interference

from outside processes. Automating responses leaves room

for cognitive control, which is evidently very limited (see

below), to engage in other processes. Thus, while walking, I

may successfully get to my office and even perform other

complex automated behaviours, like avoiding collisions

with other people, while having full capacity to mentally

rehearse an important lecture.

But automatization is a double-edged sword. I can offload

the processing of sensorimotor information to specialized sub-

computations, but those computations are now less penetrable

to modulatory influences. Thus, the efficiency that makes it

beneficial means it is inaccessible to unexpected, unusual or

rapidly changing goal states. These are precisely the situations
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that lead to self-control failure. Failure, then, can result from an

automated sensorimotor mapping doing what it is supposed to

do—but the context happens to be one where the sensorimotor

mapping led to a bad outcome.

Failure may also result from an inability to overcome the

automated sensorimotor mapping. That is, the two necessarily

compete, and the automated one sometimes wins. (If it could

not ever win, then it would not serve its purpose of reducing cog-

nitive load.) And the ego dystonia associated with self-control

failure comes from the fact that the brain contains specialized

systems that can recognize and signal failures. The self-control

failure is not selected for in the conventional sense, but it selected

for indirectly, in the sense that it is the unavoidable price worth

paying in exchange for the benefits of automatization. Self-

control failures are a by-product of processes that produce

more efficient but less flexible decisions [7].

It is worth noting that this argument applies even if auto-

matization exists on a continuum rather than in two discrete

states. If we are interested in two competing processes, then

what matters is which is relatively more automatic; if we are

interested in several, then what matters is if the one associated

with poor self-control is more automatic. It is also notable that

controlled processes can become automated and then produce

poor control. Consider, for example, a child learning, with dif-

ficulty, to read; a few years later, that child is tested on the

Stroop task and has difficulty performing accurately in the

high conflict condition.

The processes that automate basic sensorimotor mappings

operate on both long and short timescales—that is, both the

evolutionary timescale and on a scale much shorter than the life-

time of an individual decision-maker. Both processes are, for my

purposes here, similar. Self-control failure can result from sub-

optimal responses from either learned or evolved mappings.

The only important difference is that evolved responses are

likely even more ingrained, more canalized and less susceptible

to changing priorities. They may require even larger exertion

from the central executive to overcome. It is intriguing, in this

view, that some of the most powerful cases of poor self-control

(food and drugs) are ones that reflect an evolutionary, not just

learning mismatch.

If self-control is just about cognitive control, why do we not

just evolve a larger capacity for cognitive control? The answer

to this question is not yet determined [7,29,126]. It does seem

clear, however, that control is quite limited [7,125]. We have

difficulty with sustained focus and task-switching [127–131].

Control seems to be qualitatively different from capacities

like oculomotor control or form vision, which are excellent.

One possibility is that there are basic computational prin-

ciples that limit the capacity of any such complex system. For

example, there is good reason to think that the brain, especially

the prefrontal cortex, has many properties in common with a

certain neural network type known as attractor networks.

These networks can be studied in simulations to give insight

into their properties, which may reflect the properties of the

real brain. There is evidence that the number of representations

that can be kept separate within such networks is limited

[7,132]. The limit on the number of representations then may

impose a hard limit on processing capacity. Crucially, the pro-

blem cannot be solved by devoting more resources: the brain

may not be able to increase the number of available represen-

tations because shared representations provide a critical

benefit in the form of allowing generalization, insight and

novel solutions to problems [133,134].
7. Implications
By this perspective, self-control is ‘just’ a type of economic

choice (as argued by Berkman et al. [12]). But it is a special

one: it is one in which (i) at least one of the options is associ-

ated with an intrinsic bias towards or against it. And that

means (ii) overcoming that choice requires effort. And (iii)

failure to do so is both costly and ego-dystonic. These are

not features of conventional economic choices. Thus, while

I agree with Berkman and colleagues, I think they bypass

the most interesting part of self-control: its tendency to fail.

Do humans have more self-control than animals? This ques-

tion, often asked, is poorly specified. The cognitive control

framework lets us ask it more precisely. Do humans have a

greater ability to let goals and changing task demands influence

their choices—and rely less on automated mappings? The

answer is likely yes, but we need more studies directly compar-

ing the cognitive control abilities of humans and other animals

(e.g. [61]). These tests will have to rely on an understanding of

the foraging frameworks of animals, so that measures can be

designed appropriately to allow comparison [135].

If self-control is a type of cognitive control, this suggests

that much of the psychology and neuroscience of cognitive

control may have direct benefits in helping us to understand

self-control as well. Thus, for example, information about the

neuroanatomy and neuronal mechanisms of cognitive control

should be directly testable as theories of self-control. One

important area for future research will be to see whether

our understanding of cognitive control failure can shed

insight into the mechanisms of self-control failure.

From the cognitive control perspective, poor self-control

is the default and good self-control is more likely to require

deliberate effort [22]. This does not mean that we will

always perceive it as such. Our brains are highly practised

at deploying cognitive control flexibly and adaptively, so

the conflict between controlled and automatic processes

may not rise to the level of consciousness. Or it may rise to

the level of consciousness but may be perceived as effortful,

difficult or just distracting. The phenomenology of self-

control is poorly studied, but likely to be an important

motivator for future research.

Recent work in the field of self-control and in cognition

more broadly has challenged the two-systems view on empiri-

cal, theoretical and neuroscientific grounds [12,28,29,57,

136,137]. Nonetheless, taking a cognitive control perspective

on self-control suggests that this view has at least a few

merits. Specifically, any given self-control decision reflects a

competition between what can be thought of as distinct brain

processes. (This is true whether these two types of processes

are regionally or even anatomically differentiated). That does

not mean there are two systems; but there are two tendencies:

automatic and controlled. And these types may be relative,

not absolute; we may have a spectrum of processes ranging

from automatic to controlled. But in many specific situations,

there will only be two relevant processes competing. In that

sense, one could even meaningfully label them hot and cold.
8. Implications for the neuroscience of self-
control

The idea that self-control is a type of cognitive control suggests

that we do not have a special self-control system or self-control
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module in the brain. That is, if self-control is continuous with

cognitive control, there is no region whose unique purpose

(or even one of its purposes) is to drive self-control. Instead,

controlled actions likely make use of a more general control

architecture. This control architecture may be modular or

may be distributed [124,126,138,139]. It likely includes dorsal

prefrontal regions, such as the dorsolateral prefrontal cortex

and dorsal anterior cingulate cortex [7,124,126,140,141]. This

approach implies that neural signatures of self-control will be

continuous with signatures of cognitive control. Thus, a critical

test for this idea would be to compare networks involved in

cognitive control with those involved in self-control. This

could be done at both the neuronal level and at larger scales.

This idea also has implications about the relationship

between self-control and economic choice. Our proposal, in

essence, is that self-control is an economic choice in which

one option is intrinsically favoured over the other, but the

other is more consistent with long-term goals. Standard

approaches to neuroeconomics are derived from economics

and often involve binary choices, or choices between two

goods or bundles of goods in which neither is default, or

a priori favoured. By contrast, foraging-inspired models of

economic choice take as their starting point the idea that

choices are between accepting and rejecting single options

[142–145]. These models, in turn, are inspired by ethological

observations about the types of decisions that foragers make

in natural environments [34,146]. One of the key differences

between accept–reject decisions and binary choices is that

we may have intrinsic tendencies to prefer accepting or reject-

ing, or, because they are computed differently, the two types

of choices may have different psychological processes and

different neural substrates [143].

This idea in turn relates to the idea of affordance compe-

tition [147,148]. Embodied theories of economic choice, going
back to Gibson [149], emphasize that control of action is the

ultimate evolutionary driving force in the brain. As such, it

is not surprising that we see signatures of action even in

supposedly abstract reward areas [150,151]. From this per-

spective, stimuli we encounter in the environment trigger

affordances or plans for potential actions to take. The

decision about whether to take that action depends on

some thresholding process (whose exact nature remains to

be delineated). But it is this process that determines the

outcome of most self-control decisions.
9. Conclusion
Self-control is often taken as a given: we have poor self-control,

but if we tried harder we would do better. From the psycho-

logical perspective, we are flawed. But from the evolutionary

perspective, we are descended from a long line of successful

foragers, and every element of our psychology has some poten-

tial explanation in our evolutionary history. Thus, each of our

major flaws—our tendency to lower back pain, the weakness

of our anterior cruciate ligaments, our tendency to get kidney

stones, our inability to fly—demands an explanation. Our

poor self-control is a major flaw as well. We can lament it

and urge ourselves to do better in the future, but we can also

be a bit more objective and ask why poor self-control is so uni-

versal. While the phylogenetic origins of self-control failure

remain to be worked out, the weight of evidence suggests

that the neural origins lie in the domain of cognitive control.
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