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Abstract

Understanding the behavior of primates is important for primatology, for psychol-

ogy, and for biology more broadly. It is also important for biomedicine, where pri-

mates are an important model organism, and whose behavior is often an important

variable of interest. Our ability to rigorously quantify behavior has, however, long

been limited. On one hand, we can rigorously quantify low‐information measures

like preference, looking time, and reaction time; on the other, we can use more

gestalt measures like behavioral categories tracked via ethogram, but at high cost

and with high variability. Recent technological advances have led to a major re-

volution in behavioral measurement that offers affordable and scalable rigor. Spe-

cifically, digital video cameras and automated pose tracking software can provide

measures of full‐body position (i.e., pose) of primates over time (i.e., behavior) with

high spatial and temporal resolution. Pose‐tracking technology in turn can be used to

infer behavioral states, such as eating, sleeping, and mating. We call this technolo-

gical approach behavioral imaging. In this review, we situate the behavioral imaging

revolution in the history of the study of behavior, argue for investment in and

development of analytical and research techniques that can profit from the advent

of the era of big behavior, and propose that primate centers and zoos will take on a

more central role in relevant fields of research than they have in the past.
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1 | INTRODUCTION

The Minnesota Zoo in Apple Valley, MN, has the largest public col-

lection of Japanese macaques (Macaca fuscata) in the United States

(Figure 1). Every morning, the zoo's 27 macaques emerge from their

dormitory and enter a large, beautifully architectured open enclosure.

There are many ways to describe what they do next, but one way to

say it is that they proceed to generate an enormous amount of data.

That is, each of the monkeys moves each of its limbs in a specific way,

moves its body position along a particular and often complex path, and

interacts with multiple items in the pen. They also interact with each

other in complex ways, play, explore, foraging, relax, eat, and so on.

The ability to track and analyze the actions of primates like the

ones at the Minnesota Zoo has potential relevance to researchers in

biology and biomedicine, as well as for neuroscience, psychology,

comparative biology, and research into animal welfare (e.g., Bliss‐

Moreau & Rudebeck, 2020; Buffalo et al., 2019; Pereira et al., 2020;

Rudebeck et al., 2019; Santos & Rosati, 2015). And yet, nearly all the

rich data these monkeys generate largely slips past without being

registered.

Instead, characterization of complex primate behavior is limited

to what humans can annotate, laboriously, in hand‐crafted etho-

grams. Such measures can only capture information when observers

are present, that is, they do not work for behavior that occurs after

staff leave for the day, in the evening, or on vacations, or even when

the annotators' attention is momentarily diverted (Brando &

Buchanan‐Smith, 2018). It is also possible to characterize simple

behaviors more rigorously using computerized systems. For example,
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we can quantify monkeys' interactions with specialized response

systems, such as levers and buttons. Such systems produce data that

are several orders of magnitude lower in information rate than the

animals' full behavioral repertoire. For example, a measure of gaze

direction or preference, typical in many psychological studies, gives

one bit of information (left vs. right) per trial. Those data can, of

course, be used to test important hypotheses. But they come with a

high opportunity cost: they ignore much more data than they

capture.

In contrast, behavioral tracking can produce high quantities of

data (e.g., 13 body landmarks in three dimensions sampled at 30 Hz,

Bala et al., 2020) without human intervention or even oversight. In-

deed, without tracking, our ability to collect behaviors with high

technical precision and reproducibility is so limited that it might be

described as looking at the world through a drinking straw.

This is all changing, and at a rapid pace. A recent series of

technological advances have made it possible to collect a good deal

of the data these monkeys produce. These technologies are gen-

eralizable, meaning that, when appropriately trained, they can pro-

vide tracking for any species of primate, including arboreal ones. And

not just these monkeys – other species and other locations can also

be tracked (Bala et al., 2020; Dankert et al., 2009; Joska et al., 2021;

Marshall et al., 2021; Mathis et al., 2020; Walter & Couzin, 2021). We

call this technological approach behavioral imaging.

We use this term deliberately by comparison with other forms of

imaging, which can give detailed information available in the visual

domain through the use of advanced technology.

The subject of study in this approach has been called big behavior

(von Ziegler et al., 2021). By our lights, little behavior refers to

measures of behavior that involve highly reduced, low‐information

tracking of what the animal is doing. Little behavior would include

reaction times, preferences expressed through choice, gaze direc-

tions, pupil size, and reaches – measures that give a small amount of

information per unit time. Little behavior would also include etho-

grams made by trained annotators – not because they measure small

amounts of information but because that information is filtered

through the narrow aperture of human annotation abilities.

Big behavior, by contrast, includes full information about the

position of all major joints in the entire body and involves continuous

movement over an extended period of time. The extent of that time

can be very large. Scientists can now use multiple high‐resolution

cameras to continuously capture every fine‐grained behavior over

several weeks, months, and years. They can track pose of both in-

dividuals and groups. As with any big data situation, the big behavior

revolution raises unprecedented challenges, especially in managing,

analyzing, and understanding the data in a fully automatic fashion.

However, the benefits it offers are so great that many teams are

working to solve them.

The present review will describe how we got to this point, talk

about the state of the art, make a few predictions about the near

future, and sketch out some of the potential benefits. We will discuss

some of the specific scientific problems that big behavior for primates

is likely to affect. Likewise, we will argue that primate centers and

zoos will take on much larger roles in research than they have in

the past.

2 | THE CHALLENGES OF BIG BEHAVIOR
IN PRIMATES

Behavioral tracking in primates has recently become possible through

parallel developments in computer vision, machine learning, and ro-

botics. The story starts at the beginning of the last decade when

technical breakthroughs in deep learning‐enabled software to re-

cognize objects in an image by use of convolutional neural networks

(CNNs, Krizhevsky et al., 2012). Subsequent works improved on the

design of CNNs to enable automatic tracking of humans both live and

from videos (Cao et al., 2019; Fang et al., 2017; Newell et al., 2016;

Wei et al., 2016). That work in turn inspired and facilitated work that

allowed for the tracking of animals such as flies, mice, and horses

from videos (Marks et al., 2021; Mathis et al., 2018, 2020; Pereira

et al., 2019). The tools that allowed these animals to be tracked

leveraged the copious capacity of CNNs to learn the visual and

geometric relationship between landmark locations (body joints).

They also relied on relatively cheap and robust digital cameras and

standard computer vision techniques.

Relative to other animals, nonhuman primates have been much

more difficult to track (Bala et al., 2020; Labuguen et al., 2020;

Negrete et al., 2021; Testard et al., 2021). There are three reasons for

this. First, their body joints are highly flexible and thus generate a

large number of distinctive body postures. Each joint has multiple

degrees of freedom and these complex joint positions are essential

for tracking and identifying activities such as bipedal/quadrupedal

locomotion, hanging, and dexterous object manipulation. This fact

distinguishes primates from non‐primate animals such as rodents and

insects – the poses of these animals can be characterized by a small

basis set. Second, primates' bodies are covered by thick fur, which is a

characteristic failure case of computer vision‐based tracking

F IGURE 1 Camera tracking system at the Minnesota Zoo.
Relatively affordable cameras, such as GoPro cameras, when
combined with computer vision tracking software, can provide
estimates of pose, although they depend on having long‐term access
and a safe vantage point
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algorithms. For example, the pelvis location is highly ambiguous while

performing a sedentary activity because there are no visually or

geometrically salient features to identify the pelvis joint. Third, pri-

mates' body movements are fundamentally three dimensional (3D).

The range of motion of bodies spans full three‐dimensional space,

and more importantly, the motion often involves 3D interactions with

objects, peers, and environments. This dimensionality raises two

major problems – (1) considerable occlusion and (2) broad variation in

appearances.

We have proposed that, given these difficulties, nonhuman pri-

mate tracking cannot be achieved using existing tracking paradigms

(Bala et al., 2020). In particular, off‐the‐shelf solutions like Dee-

pLabCut need orders of magnitude more data than they do use other

species, and so bespoke solutions currently work best. We need in-

novations in both hardware and software that are tailored to reflect

the primate characteristics. For the readers' benefit, we next describe

several of the needed innovations and several of the major factors

that must be considered and the obstacles that must be overcome.

2.1 | 2D versus 3D representation

Primates move in three dimensions. Although other animals also

move in three dimensions, primates tend to make use of all three

quite a bit more than other popular model organisms. A rat's major

axes of movement are on a plane along the ground and a worm's

behavior is well studied in a petri dish. By contrast, a monkey moves

vertically, but, more importantly, its limbs move with much more

freedom relative to its central body axis.

In most computer vision solutions, tracking occurs on the XY

plane, without regard to depth (i.e., the Z plane); doing so is much

easier to implement and costs little with plane‐moving species.

Continuing with the rodent example, a typical rodent tracking system

uses an overhead camera and tracks XY locations of landmarks. This

2D representation, however, shows limited expressibility to describe

the behaviors of primates due to their 3D body movement over 3D

scenes. The 2D representation is a camera projection of 3D behaviors

where its location drastically varies as the viewpoint changes. A 3D

representation (XYZ) is a viable solution that requires a specialized

system such as a depth camera or a multiview camera system. For

instance, a system of multiview cameras is used to develop Open-

MonkeyStudio that enables tracking 3D body movements of maca-

ques (Bala et al., 2020, Figure 2). The resulting 3D representation is

invariant to the viewpoint change, which allows modeling coherent

behavioral clusters compared with the 2D representation as shown in

Figure 3.

2.2 | Target‐specific model versus generalizable
model

The ability of a CNN model to track primates is limited by our ability

to train the model. Our ability to train the model is limited by the size

and quality of the training set. Thus, the success of tracking algo-

rithms is predicated on the existence of large, accurate, and well‐

curated datasets. For instance, large scale annotated data sets such

as COCO and MPII have been used to train CNNs to reliably detect

human poses (Andriluka et al., 2014; Lin et al., 2014). However, such

large data sets do not exist for most animal species.

This data challenge has been addressed by training a target‐

specific model facilitated by annotation tools. For example, user in-

terfaces provided by DeepLabCut and LEAP have enabled effective

pose annotations by use of a very small number of annotations (as

few as 10–1000) in a video (Mathis et al., 2018; Pereira et al., 2019).

These methods, which make use of transfer learning or its variants,

work for relatively simple organisms like flies, worms, and mice (e.g.,

Mathis et al., 2018; Nath et al., 2019).

Despite its remarkable performance, this approach is not suited

to track the behaviors of nonhuman primates because visual ap-

pearance significantly varies as a function of viewpoint, pose, and

species (Bala et al., 2020). As a result, a CNN trained using a data set

from one viewpoint does not generalize to that from another view-

point. Instead of learning such target‐specific models, we have pro-

posed a new paradigm that aims to learn a generalizable model by

collecting a large, curated data set. This curated data set must include

diverse images across species, background, illuminations, poses,

viewpoints, and interactions, where the size of data is comparable to

the human data size (order of millions). The MacaquePose data set

that is made of 17,000 annotated internet images (Labugen

et al., 2020). It is an inspiration for the OpenMonkeyChallenge pro-

ject (Yao et al., 2021). It includes a large variety of appearances,

poses, and viewpoints of macaques in the wild, which can be com-

bined with state‐of‐the‐art pose detection models such as Dee-

pLabCut and LEAP. The performance was unprecedented: no existing

macaque detection model was able to achieve that level of accuracy

and generalization, due to the scale of the data. Nonetheless, it still

lags behind the accuracy of human pose estimation. Open-

MonkeyChallenge is designed to address this limitation by creating a

6 fold‐bigger‐data set across multiple species to enable learning a

shared representation between them (Yao et al., 2021).

Once the large data set is collected, a generalizable CNN can be

trained to detect primate poses from out‐of‐sample videos regardless

of camera configuration, background, and species. Such networks can

also be trained to use models of the animals to draw inferences about

positions of landmarks that are occluded or that are not in the original

training set (Bala et al., 2020). For example, we have collected more

than 100,000 images with 17 landmark annotations portraying pri-

mates in natural habitats. The images can be obtained from the in-

ternet, national primate research centers, and from zoos, and include

26 species (20 monkeys and 6 apes) as shown in Figure 4. This is, by

far, the largest collection for nonhuman primates. With this data set,

we recently opened a new benchmark challenge called Open-

MonkeyChallege (http://openmonkeychallenge.com/) that facilitates

an annual competition to develop a generalizable pose detection

model. We believe that this data set, and others like it, will be crucial

for developing widely used models for tracking nonhuman primates.
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2.3 | Multi‐view camera system

Most existing animal tracking approaches are designed to draw pose

inferences from an image stream from a single camera. Due to the 3D

nature of primate behaviors, multiview camera systems provide

several benefits. These include:

• Disocclusion: in tracking, occlusion is the main source of pose de-

tection error. In particular, when a primate interacts with objects

and other primates, those other things will cover some of the

relevant landmarks. For example, occlusion is often an unavoidable

problem with arboreal primates, such as gibbons, because the

trees in which they spend time naturally cover their landmarks.

Indeed, one side of the animal's body will almost always occlude

the other, just as the limbs will often occlude the more central

parts of the body. Some of this occlusion can be mitigated by a

multiview camera system; even when the cameras do not offer

views of the occluded parts, the parallax views they provide can

greatly facilitate inferences about the true positions of the re-

levant landmarks. The benefits of disocclusion are particularly

valuable when considering social interactions, which are often

naturally occluded by the agents involved in the interaction.

• Robust estimation: Multiple simultaneous observations reinforce

robust estimation. The multiview images of a common primate are

visually and geometrically distinctive, and therefore, aggregating

the detections from these multiview images allows more accurate

and robust estimation in the presence of measurement noise.

• Data augmentation: Multiview images provide trivial data augmenta-

tion. Annotations from two viewpoints can be reconstructed in 3D,

and in turn, projected onto other images, which forms additional an-

notations without manual effort. This leads to significant improvement

on annotation efficiency (Bala et al., 2020; Marshall et al., 2021).

F IGURE 2 Automated pose‐tracking software, such as OpenMonkeyStudio (Bala et al., 2020), can provide high‐quality tracking of poses in
primates. The OMS system is based on multiview capture, which can bypass problems associated with occlusion
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For instance, in OpenMonkeyStudio, two to three images are manually

annotated and nearly 50‐60 multiview images are automatically an-

notated using the multiview geometry. This results in a generalizable

model trained by a large, annotated data set (~200K images).

• 3D representation: Multiview geometry offers a 3D representation.

This is different from the 3D lifting approach that reconstructs 3D

pose from a single view image of which reconstruction is defined

up to scale and orientation (Günel et al., 2019). With multiview

images, full metric scale reconstruction can be obtained.

2.4 | Identifying individuals

Primates are social animals. Indeed, their social nature makes them an

appealing model organism for humans, including both healthy social

development and diseases associated with impaired social function,

such as autism and Alzheimer's Disease. The fact that they are social

means that any technology deployed to understand their behavior

must work with groups. Indeed, both zoos and primate centers often

have groups as a standard organizational unit. Standard pose tracking

software can typically be extended to include tracking multiple in-

dividuals (see above and Bala et al., 2020). However, these systems

need to have advanced features to ensure individuation. That is,

systems may obtain good performance on pose estimation through

interpolation and deduction, but these tricks can lead to confusion

over identity. Identity confusion can cause critical problems with

experiments when the goal is to look at changes in individuals

longitudinally. Consider, for example, a study to monitor the success

of a physical therapy regime for an individual monkey who has a limp.

If the tracking system confused him with a conspecific, it will appear

F IGURE 3 With OpenMonkeyStudio, we compare two‐dimensional (2D) and 3D representations in macaques (Bala et al., 2020). We
compared our systems' ability to recognize semantic actions (standing, walking, climbing, climbing supine, sitting, and jumping). (a) The poses are
clustered by using UMAP. Each cluster is correlated with specific actions. (b) With the clusters, we recognize actions using the k nearest neighbor
search and visualize the transitions between actions. (c) In contrast, the 2D representation provides the clusters that are driven by the pose and
viewpoint
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that the limp has healed spontaneously, when in reality, it is just

tracking a different individual. Even if there is a small probability of

misidentification, this probability may be effectively compounded

over time – possibly to near certainty ‐ in long‐lasting studies.

Individuation is a deceptively tricky problem and is one that is

poorly suited for pose tracking systems. The reason is that, without

secondary checks, the method is susceptible to catastrophic failures –

even rare loss of coverage can lead to confusion and major problems

with data. Thus, individuation often can benefit from complementary

approaches, such as identification of individuals by face, body shape,

movement type, or other distinguishing features. For example, one

possible solution is to use technology such as radio frequency iden-

tification (RFID) tags to define individuals. That in turn would require

placing RFID tags onto individuals' bodies, which may be impractical.

Finally, a third approach involves humans checking the results of the

tracking system to ensure that individuation is maintained. This ap-

proach is costly but may still be orders of magnitude more achievable

than full pose tracking by humans. There is some work on the use of

trackers in primates (e.g., Gazes et al., 2019; Gelardi et al., 2020).

2.5 | General technical issues

In addition to these problems there are several basic technical pro-

blems that need to be overcome and whose difficulty should not be

understated. We list a few of them here. Anyone interested in

tracking primates must have enough cameras to cover the area of

interest. Typically, tracking is considerably more useful if the user can

achieve 3‐D tracking, which in turn means multiple (often four or

more) cameras. In either case, if the recording is longitudinal, these

installations will need to be weatherproofed and will need to be

protected from the prying hands of the primates themselves. This

level of coverage may be daunting at large zoo exhibits and even

more so in field cages at primate centers.

These cameras will need to be synchronized to the precision of a

single frame and must maintain synchronization across the period of

recording. All cameras must be calibrated, both intrinsically and ex-

trinsically, and this calibration must take place often (typically at least

once a day). The cameras will typically generate large volumes of data

(often over 1 TB per hour), and this data stream must be managed

and stored. That information must be transported from the recording

site to the location where the servers are stored. Often it is im-

practical to build them near the site where the primates live, so long

high‐quality fiber‐optic wires, possibly requiring laying new wiring,

may be unavoidable. The need for storage can be reduced if some

computations can occur online or at the site of recording, but this, in

turn, raises other technical challenges. Ultimately, these things can be

costly – a simple web cam will likely not offer the full benefits of

tracking. Moreover, the installation must be coordinated with the

stakeholders of the site, and if it is a zoo or primate center, they may

have other needs that supersede those of the scientists who want to

do the tracking.

3 | AUTOMATED BEHAVIORAL STATE
IDENTIFICATION (“ETHOGRAMMING” )

Automated behavioral sampling and identification (briefly, “auto-

mated ethogramming”) procedures offer the promise of using a

computer to perform the process of identification of behavior, ra-

pidly, cheaply, and on a massive scale (Marks et al., 2021; Voloh

et al., 2021). Because it is much cheaper and faster, automated

F IGURE 4 Images from our new data set, OpenMonkeyChallenge, illustrating the range of species, individuals, and backgrounds
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behavioral identification promises many things that are uneconomic

with human annotators, such as massive throughput testing, or

monitoring behavior twenty‐four hours per day, or testing unlikely

hypotheses that would be too costly to test with standard

approaches.

Since it is a new technology, it is difficult to predict how beha-

vioral imaging will be best used. Here, we will make some educated

guesses. However, like many others, we believe that because of its

ability to tell us about behavior, the promise is high (Calhoun & El

Hady, 2021; Calhoun & Hayden, 2015; Datta et al., 2019; Krakauer

et al., 2017). Specifically, we envision that longitudinal and quantifi-

able analysis from years‐long recordings of primates will enable us to

discover the reproducible behavioral patterns and characteristics,

which has been impossible from small‐scale data analysis. Pose (see

above) can tell us where the landmarks and major joints are posi-

tioned in space, but the key dependent variable for many studies is

what behavior the animal is performing (Anderson & Perona, 2014).

In other words, the ideal output of behavioral imaging is the category

of behavior that describes the animal at every moment in time. Such a

time series would be the starting point for a great deal of research.

For illustrative purposes, we consider a couple of examples.

Suppose we have developed a potential animal model of clinical

depression and wish to validate it (e.g., see work by Shively & Will-

ard, 2012). It could be validated by comparing the amount of time the

animal is immobile, sleeping, or stays in its dormitory – behaviors that

would have clear face validity to symptoms of human depression. As

noted above, these behaviors can, in principle, be scored by a human

observer, but only in small quantities because of the cost. Another

example would be anxiety – behavioral identification could be used

to determine whether the animal shows behaviors with face validity

to human anxiety disorders such as excessive grooming, fastidious-

ness, unusual behaviors around doorways – behaviors with face va-

lidity to human anxiety. Moreover, the ability to monitor for both

types of behavior efficiently means that we could then engage in

unsupervised classification of possible depression analogs by the

presence or absence of specific symptoms and/or by their cross‐

symptomology with anxiety homologs. This clustering could then

differentiate different subtypes of depression correlates.

Another example would be in the form of precursors to drug

abuse. Monkeys are an important model organism for drug abuse for

several reasons, including their long lifespan, their closeness to hu-

man body size (compared to rodents), and the similar architecture of

their prefrontal cortex. Within the world of addiction, one important

question is how strongly one can predict susceptibility to drug abuse

based on past behaviors. This kind of search is essentially a needle in

a haystack type of search – we must have access to large amounts of

highly quantified (and ideally unbiased) measures of behavior that we

can analyze and correlate with subsequent behavior following drug

exposure. Behavioral imaging with state identification provides an

ideal input to such studies.

More generally, behavioral states could be used as a dependent

variable in studies of how some intervention affects the way the

animal distributes its behavioral state over time. Or they could be

used as an independent variable, such as in studies of how an animal's

behavior affects that of a conspecific. Identifying behavior based on

pose is a nontrivial problem and remains an area of active research in

many species. Most existing work has been done for animals like flies,

worms, and mice. In primates, automated behavioral identification is

relatively unexplored. However, the general principles developed for

other animals ought to generalize relatively straightforwardly. In

general, such approaches take the raw pose data, subject it to some

preprocessing (such as centering the animal and rotating it to a ca-

nonical orientation), and then performing some unsupervised proce-

dure, such as t‐SNE or UMAP, to identify behavioral states.

Automated behavioral state identification is an alternative to

hand‐scored behavioral sampling procedures that produce etho-

grams. Automating the process addresses the key limitations in this

behavioral sampling approach by providing a computational solution

that is cost‐effective, consistent, fast, accurate, and fine‐grained

(Anderson & Perona, 2014).

(1) Cost‐effectiveness: the human‐scored ethogram approach in-

volves highly trained human annotators who watch live animals

or videos and mark down the behaviors they observe based on a

predetermined rubric. These humans are skilled in identifying

behaviors; indeed, the need to carefully train these observers is a

major cost of the ethogram approach and one that makes it very

expensive to implement. Being able to do that takes education

and training and does not scale with large datasets. Big behavior

automates behavioral annotations, which reduces the cost of

training, management, and labor.

(2) Consistency and speed: different human raters tend to have dif-

ferent subjective criteria, meaning the studies are often not re-

producible with the same data if the raters are no longer available

(Anderson & Perona, 2014; Levitis et al., 2009). Even well‐trained

individual human observers can often be somewhat inconsistent.

This is especially likely to be a problem with novel and unusual

primate behaviors, or ones that are poorly characterized.

(3) Accuracy: human raters are intrinsically fallible – they get bored,

especially after many hours of video footage, they use criteria

that change subtly over time, they have blind spots, systematic

patterns of behavior that they are less likely to detect. Consider

for example how often even professional sports referees make

mistakes or even disagree, and that in sports, categories like fair

and foul are rigorously defined.

(4) Bias: human raters tend to exhibit systematic biases (Kardish

et al., 2015). Indeed, careful experimental work has shown that

human observers interpret behaviors through their own ex-

pectations (Tuyttens et al., 2014). More broadly, a great deal of

behavioral identification is subjective, meaning it may be difficult

to evaluate bias so that it can be reduced or avoided; even os-

tensibly objective measures ought to be blinded, and seldom are

(Holman et al., 2015).

(5) Longitudinal perspective: Humans are especially poor at detecting

rare behaviors, and at detecting the kinds of behaviors that in-

volve gradual change over long periods of time (Biggs
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et al., 2014; Kryszczuk & Boyce, 2002; Wolfe et al., 2005). Au-

tomated ethogramming offers the opportunity to take the long

view, to accumulate data over long periods, and draw inferences

about rare and slowly changing behaviors. We anticipate this

benefit may be especially important for developmental trajec-

tories, such as skill‐learning, aging, and adolescence.

(6) Annotation resolution: Humans have a sensitivity limit. We can

only detect a certain number of behaviors and can only detect a

certain granularity of behavior. For example, it may take some

effort to be able to identify the different gaits of a running horse,

especially subtly different ones. Moreover, it's possible that there

are some patterns in the data that are real and measurable, but

humans simply are not adapted to notice them without help. For

example, some behaviors may reflect certain patterns of si-

multaneous activity across multiple limbs and may only be de-

tectable and classifiable after certain dimensionality reduction

processes that humans lack the cognitive capacity to perform.

4 | WHAT BEHAVIORAL IMAGING OF
PRIMATES OFFERS BIOLOGY AND
BIOMEDICINE

Behavioral imaging of primates can be of great benefit to all manner

of scientists – from those interested in the biology of primates to

those who are interested in using primates as model organisms for

disease. It is important to note that these categories are not mutually

exclusive, nor does biomedical research necessarily make use of in-

vasive procedures on unhealthy animals. Indeed, there is a great deal

of important biomedical research that can and should be done on

healthy animals; this study would seek to understand the biology of

these animals without any use of disease models or simulacra of

disease processes. Thus, the study of healthy animals poses an op-

portunity for biomedicine as well as for biology.

4.1 | Improvements in diagnosis

Diagnosis typically requires specialized expertise in humans; in ani-

mals, who cannot talk and often disguise their symptoms, it's more

difficult. Many conditions can only be diagnosed following con-

spicuous presentation of behavioral symptoms. Many diagnoses re-

quire advanced veterinary intuition. In many cases, animals

deliberately camouflage their symptoms. For these reasons, diagnosis

is likely to be a major focus for behavioral imaging. This is not to say

that computers will monitor all behavior and replace veterinary ex-

pertise. Instead, we imagine that behavioral imaging will provide a

complementary measure that will boost trained medical opinion.

First, it will provide much more information, over a longer period

of time. Second, it will offer the ability to identify subtle and hidden

behavioral patterns, that may be ignored or missed. For instance, a

monkey may slightly drop her shoulder while walking when her arm is

wounded. Such differences represent symptoms, which have not

been coded and listed as a behavioral marker by the experts. Third, it

will offer acute measures, with greater quantity, accuracy, and sen-

sitivity than human observers can provide. Finally, it will provide a

ready and quantifiable control group, including individuals in the

same facility, to say whether the individual in question differs from

their peers.

4.2 | Finer‐grained diagnoses

Many diseases are clusters of distinct conditions with somewhat

different symptom profiles and different best treatments. To give a

well‐known example, there are many effective psychopharmaceutical

treatments for clinical depression, and different patients respond

differently to different ones. Trying each one takes several months,

so if diagnosis could be sped up, a great deal of suffering could be

eliminated. It is hoped that finer‐grained diagnosis, based on beha-

vioral presentation, would provide an indicator of which treatment

should be tried first. The ability to characterize behavior with high

bandwidth promises greater information that can be clustered and

specific disease subtypes identified. Even modest improvements in

the classification of diseases into different subtypes, which in turn

can motivate the specialized study of treatment.

To give one well‐known example, deep brain stimulation (DBS)

treatment for depression in humans is sometimes focused on the

subgenual anterior cingulate sulcus (Lozano et al., 2008; Mayberg

et al., 2005). This is a brain region whose responses are known to be

associated with depression, with negative outcome monitoring, and

with depression severity (Alexander et al., 2019; Azab &

Hayden, 2018; Drevets et al., 2008; Maisson et al., 2021; Roberts &

Clarke, 2019). However, despite promising early treatment results,

follow‐up studies have been equivocal. It has been proposed that the

core issue is that we are treating two different diseases with different

anatomical bases (Drysdale et al., 2017; McGrath et al., 2013). Im-

proved diagnosis in humans would help us test these hypotheses

faster, and more valid animal models (see above) would help

even more.

4.3 | Validating animal models of disease

Primate models of disease are crucial to modern biomedical research.

In many cases, models are imperfect or are only relevant to a subset

of symptoms. In other cases, the validity of primate models is un-

known. For example, the limitations of models are especially well

delineated in the case of psychiatric illness, which often relies on

personal reports. Consider that many of the major criteria for de-

pression and obsessive‐compulsive disorder rely on subjective de-

scriptions of feelings (Beck et al., 1988; Goodman et al., 1989).

Ascertaining the validity of an animal disease model can be a sur-

prisingly ad hoc procedure, based on a superficial assessment of

major symptoms (Geyer & Markou, 1995; Koob & Zimmer, 2012). In

many cases, establishing a valid animal model for some disease or
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symptom class takes many years ‐ even decades ‐ to result in a

consensus across the field. Despite these problems, some diseases, or

some symptom classes may be characterized by a specific set of

behaviors and behavioral patterns; it is possible that the particular

constellation of behaviors can serve as an ethological fingerprint of

the disease or symptom. While this possibility is speculative, it cannot

readily be tested until we have behavioral tracking. Optimistically,

these fingerprints can be compared across species to test specific

hypotheses about the behavioral validity of specific models.

4.4 | Improvements in treatment

Many diseases have well‐defined treatments that require parameter‐

setting (Johnson et al., 2013). For example, Parkinson's Disease is

well treated by DBS although the parameter space is very large. The

optimization of parameters takes place through what is more or less a

gradient descent procedure, that is, through trial and error

(Schiff, 2010). The slow part is the assessment of state in the patient.

Primate models can improve that process, but they still have a slow

assessment stage – often even slower in primates because they lack

the verbal modality. Big behavior offers a solution to this problem – it

is both high bandwidth and computerized, so it can be made very fast,

and potentially improve treatment time by orders of magnitude. It is

possible – albeit speculative at this point – that behavioral imaging

can lead to rapid closed‐loop parameters for treatment. We can test

specific parameters and read out the effects of those parameters –

whether they are stimulation parameters in DBS, anatomical posi-

tioning of stimulation, different drug doses, or any other of a large

number of possibilities.

4.5 | Replacement for other dependent variables

To be a bit more speculative, behavioral imaging could potentially

offer new dependent variables that could reduce the need for in-

vasive measures, leading to benefits in welfare, and increases in the

efficiency of research. A good deal of research may require some

measure of the efficacy of some intervention, but not depend on any

particular measure. For example, consider a team of researchers who

want to rapidly screen several dozen candidates for headache med-

icine, most of which will be inert. In that case, behavioral imaging may

provide information sufficient to move on to the second stage. For

example, animals without headaches may be more active overall, may

engage in more social behaviors, may spend more time in well‐lit

areas, and so on. And it may do so at a price that is much cheaper, and

with less intervention, than other measures (such as measures of

internal physiological functioning).

Or, to give an example drawn from the psychological literature,

scientists are sometimes interested in knowing the way that an ani-

mal will respond to seeing a reflection of itself in the mirror (Gallup

et al., 2002). For example, a researcher may want to know whether

an animal differentiates seeing itself in the mirror from seeing

another conspecific. This study may in turn be biased by observation

or may be slow and may benefit from running dozens of animals

instead of a few. Automated tracking could make high‐throughput

mirror testing feasible. It could also make it possible to compare many

species in a larger clade, rather than forcing psychologists to pick one

or two exemplar species.

Indeed, in such cases, big behavior offers the possibility of per-

forming such experiments in animals that are inaccessible to other

measures, including rare and endangered animals, and highly in-

telligent animals, such as apes. Even for standard laboratory primates,

behavioral imaging may be an order of magnitude cheaper than other

measures (see above) and may therefore be a preferred alternative.

For example, it may require less specialized equipment, trained

technicians, or built laboratory environments. Finally, even if it is not

cheaper, it may have fewer welfare costs than invasive measures, and

may be preferred for that reason.

4.6 | Natural behaviors

Finally, behavioral imaging allows scholars to monitor naturalistic – or

at least relatively naturalistic behaviors. When primates perform

tasks that resemble those for which they have evolved, their behavior

is more likely to reflect their normal response biases, and thus to be

more ethologically valid, and likely more interpretable (Hayden, 2018;

Pearson et al., 2014). For example, we have argued that both risk and

impulsivity measures in primates are biased by standard laboratory

tasks (Blanchard et al., 2014; Eisenreich et al., 2019; Hayden, 2016).

While we may currently lack even strong hypotheses about the types

of scientific questions that can best be asked by studying natural

behavior at scale, the best ideas often come after the data are col-

lected and while they are being analyzed. And analysis of new data or

old data is better scales is often the best way to drive the develop-

ment of novel theories, hypotheses, and tests. For these reasons we

believe that automated recording of natural behavior is likely, by

itself, to produce important insights.

5 | WHAT BEHAVIORAL IMAGING
OFFERS ZOOS AND PRIMATE CENTERS

Much of the behavioral imaging work to be done can occur at spe-

cialized sites such as zoos and primate centers. These places have

their own agendas and their own group of engaged stakeholders.

While research is often a major goal, it is not the only one, and even

when research is a priority, there are many researchers with com-

peting demands. It is worth exploring, therefore, how the benefits

that behavioral imaging offers can also benefit zoos and primate

centers.

Indeed, many of these benefits are overlapping. For example,

zoos and primate centers have a great interest in keeping their ani-

mals healthy, and that means that any improvements in diagnosis and

detection of latent disease states can help them in their own mission.
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Consider, for example, the benefits offered by an always‐on beha-

vioral tracking system that identifies pose for all primates in an en-

closure, and then quantifies behavioral state. This system could

perform monitoring at night and holidays when staff is absent and

send warnings to on‐call veterinary staff. It could also serve as a

tracking history for an animal that needs diagnosis and ask how long a

particular behavior has been evident, how long it has taken to pro-

gress whether this animal is showing improvement, and so on. It

could free up time for the veterinary staff to focus on other issues,

such as enrichment, that would directly improve the lives of the

animals on site, thus leading to secondary welfare benefits.

Another example would come from enrichment interventions.

Zoo and primate center staff typically have at hand multiple possible

enrichment opportunities, but very little direct data from their own

subjects about which enrichment opportunities have the greatest

desired effect. And the desired effect may be species dependent, and

it may be individual dependent, and may even be context dependent.

When an animal is anxious, the best enrichment may be different

than when the animal is recovering from a broken leg. The ability to

measure behavior and automatically evaluated the efficacy of specific

enrichment interventions is likely to lead to fast advances in welfare.

It is important to note that these benefits go hand in hand with

the research benefits – the tracking that benefits welfare and health

can also produce data that is of interest to scientists, thus making

scientific exploration more readily available to scholars interested

in it.

Finally, it is worth noting that there are potential conservation

benefits to behavioral imaging. Many insights obtained from artificial

environments can be used to gain insights into how animals behave in

their natural environments and develop insights that can be used to

protect them in those environments. Second, they can be used to test

hypotheses about how best to reintegrate animals into natural en-

vironments, and speed and improve that process. And third, by im-

proving welfare in unnatural environments, imaging can help keep

animals healthy and productive, so they (or their progeny) are ready

to return to the environment at a later time.

6 | LIMITATIONS OF BEHAVIORAL
IMAGING

The present review is meant to highlight the virtues of behavioral

imaging. Of course, it has many limitations as well. First, it is nontrivial

to implement pose tracking in any environment, even in a laboratory.

It is undoubtedly more difficult in environments tailored to other

goals. Successful installation of a working system may require mul-

tiple computer scientists and electrical engineers. This level of com-

plexity is probably unavoidable right now, but may be made simpler in

the future as tracking systems – both software and hardware –

improve.

Second, there is a basic limit on the amount of information that

can be gained solely from behavioral imaging. A good deal of what

goes on inside an animal is not visible to the outside world. For

example, an animal hiding in the corner may be afraid, maybe de-

pressed, maybe tired, or may just be actively observing the en-

vironment from a safe vantage point. It is very possible even in theory

that there is no way given the behavior alone to draw a robust in-

ference about the animal's true state. Indeed, animals may expend

effort to hide or conceal their status, such as if they are injured. That

is, there may be some information – perhaps a great deal – of in-

formation that is not detectable by behavior alone.

Third, even among behavior that is expressed, some of it requires

high‐quality tracking that may be impractical in zoo environments. To

give a few examples, there may be important information available

about the animal's internal state that is visible in facial expressions,

fine hand movements, and gaze directions. Indeed, eyes can give

information about the locus of attention, about intentions, about

priorities, and about beliefs; these things can in turn provide in-

formation about the animal's internal state. Even the pupil size of the

animal can give a great deal of information about the animal's beliefs,

expectations, surprise, reward function, attention, arousal, and urges.

This is information that is available in behavior but extremely difficult

to extract in practice.

Finally, it is worth emphasizing again that zoos and primate

centers have many competing goals, and that benefiting scientist is

not the only one. As such, behavioral imaging must satisfy the con-

straints imposed by the competing goals of the recording site. These

can include unobtrusiveness, limits to a number of cameras, limits to

power, and storage. It can also involve political calculations, which

may involve coordination among stakeholders.

7 | NEW ROLES FOR PRIMATE CENTERS
AND ZOOS IN THE ERA OF BIG BEHAVIOR

A great deal of primate research takes place in the laboratory. In

contrast, zoos have historically been used for research less than they

could. And while primate centers typically have a strong research

role, this role conflicts with their other roles, including as a supplier of

primates, and with their own research agenda, which may conflict

with that of any given scientist. We believe that both zoos and pri-

mate centers' resources are poised to become more useful in the era

of big behavior.

The underutilization of primate centers and zoos stems from

several specific factors that, on balance, give the laboratory distinct

advantages. These include the fact that laboratories offer freedom to

perform invasive experiments, give access to research animals full

time, and the ability to use animals solely for research. Laboratories

also offer the ability to focus on any of a small number of well‐

studied research organisms, with the benefits that standardization of

research animals brings. While primate centers have some of these

benefits, the primates located there are often needed for breeding,

and competition for access to them can be strong. We believe that

behavioral imaging mitigates some of the limitations of zoos and

primate centers, and will make them more attractive locations to

perform research.
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7.1 | Zoos and primate centers are designed for
observing natural behavior

Zoos are designed with public audiences in mind and are archi-

tectured to maximize unobtrusive viewing from many vantage points

(Figure 5). Indeed, they are laid out to have viewing in a way that

does not bother animals and is also safe from their interference. This

is ideal for big behavior. It allows measuring natural behaviors in-

cluding social interactions with minimal interference (see above).

While primate centers are often not designed for the public, they

typically have the observational capacity for another reason – to

allow staff to rapidly scan the housing for checking on animals and

ascertaining if there are any problems. This is an advantage over

many research laboratory environments, which are often constructed

generically and without observation in mind. Many laboratories have

tight space restrictions, which can result in imaging that is difficult or

distorted. This is also a major advantage of zoos and primate centers

relative to field research sites, which pose many practical problems

for observation. For example, field sites are often remote and far

from power and repair facilities, and studies can last multiple weeks.

7.2 | Zoos and primate centers have many
individuals

While laboratory studies of primates typically focus on a few in-

dividuals (in many cases, two per study), zoos and primate centers

have access to many more. Even in zoos, in which numbers may be

limited for a given species, this number is augmented by the national

network of exchange of animals between zoos. Of course, labora-

tories can compensate for low numbers with a high degree of training

and instrumentation per subject. But with tracking, these needs can

be reduced. The larger number of individuals is important because it

can reduce Type II errors, can improve generalizability, and can fa-

cilitate individual difference studies. Moreover, the relative ease of

collecting behavioral imaging data means that data from multiple

zoos can in principle be combined, thereby further increasing

numbers. In contrast, laboratory research is supported solely by

funding for the research itself, so the cost of adding additional ani-

mals to a study is borne by the research funds.

7.3 | Zoos (and sometimes primate centers) have
many species

Individual laboratories specialize in a handful of model organisms and

focus on a deep search into the biology of those individuals. This lack

of species diversity is a limit for biomedical research laboratories, as it

reduces generalizability. In contrast, zoos typically have a large

number of species. This breadth of species has several benefits.

Perhaps the greatest is for comparative studies. Indeed, the lack of

variety of species has been identified as a limitation of major biolo-

gical and biomedical research in the modern era, and a limit on the

generalizability of the resulting science. The variety is limited for

practical reasons by the complexity of having to learn the intricacies

of multiple animal species. Zoos already bear this cost. We can only

imagine the benefits to the research of having access to a large

number of species, each of which can be selected for a particular

study tailored to the specific needs of that study (cf. Stevens

et al., 2005).

7.4 | Zoos and primate centers have excellent
records about their animals

Zoos and primate centers have access to their animals for long per-

iods of time, which makes it possible to answer important questions

about their ancestry, behavioral history, their DNA, endocrine profile,

and so on. This is an advantage relative to field studies, where animal

subjects are often catch‐as‐catch‐can. Even in cases where the same

individuals are followed for many years, there is an enormous cost to

developing this knowledge, and that cost makes it harder to explore

new species or groups of individuals. The record‐keeping in zoos and

primate centers is also better than the laboratory, where most ani-

mals are procured from suppliers with unknown details, or, in the

case of primates from breeding sites where this information is often

unavailable.

7.5 | Zoo and primate center environments are
designed for welfare

Zoos and primate centers have a keen interest in keeping their ani-

mals happy and unstressed. Aside from statutory and regulatory

reasons, these places have a strong incentive to do this. Zoo audi-

ences like seeing happy animals, and happy animals are more usable

by primate center researchers and purchasers. In contrast, laboratory

environments are designed to optimize data collection. As a result,

zoos provide opportunities for ethologically valid behavior. That type

of behavior is invaluable. For example, psychiatric studies often rely

F IGURE 5 The orangutan enclosure at the Toronto Zoo allows
for panoramic viewing of the research subjects, who have a large and
enriched space to move in. Such enclosures are particularly useful for
behavioral imaging
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on the assumption that animal models are psychiatrically normal ‐

deviations introduce biases which can, in turn, reduce the efficacy of

treatment effects. Even nonpsychiatric studies, however, can be

hampered by the introduction of stressors that serve as uncontrolled

variables (at best) or as competitors to variables of interest.

8 | CONCLUSION

Behavioral imaging in primates is poised to provide many research

benefits to biologists and medical researchers. The data such meth-

ods provide is greatly enriched compared to data derived from earlier

methods, such as preference, reaction time, and gaze direction, which

involves low amount of information about animals' internal states.

This is not to minimize the value of such methods. Measure of such

low information behavior has been critically important for many

studies and has led to many important insights. Indeed, that approach

has been a mainstay of our own labs. Our labs, among others, have

been interested in studying more complex and naturalistic behaviors

and have begun to do so, although, still using very simple measures

like positions of single landmarks and gaze (Yoo et al., 2020; Yoo,

Hayden, et al., 2021; Yoo, Tu, et al., 2021). Clearly, big questions can

be asked with conventional approaches.

However, it's still looking at the world through a keyhole. With

new technologies and new approaches, we are now able to open the

door and step into the world and see behavior fully. It's still hard to

predict all the effects that change will cause. That's partly because

most of the analyses to study these data have not been invented.

They will require new mathematical techniques that are only begin-

ning to be delineated. Moreover, it's not clear how much of the an-

imals' internal states leak out through their behavior. Nonetheless,

we believe that these changes will lead to great advances in our

understanding of the machinery of living things.
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