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Opinion
Glossary

Bayes’ rule: a rule of statistical inference used for updating uncertainty about

statistical parameters (u) based on prior information (p(u)) and new observa-

tions (xi): pðujxi Þ ¼ pðxi juÞpðuÞ
pðxi Þ

.

Bayesian learning: a set of learning models in which agents maintain

knowledge as probability distributions updated by Bayes’ rule.

Classical or Pavlovian conditioning: the process by which environmental

stimuli become associated, via learning, with the prediction of outcomes.

Cognitive set or set: the combination of world model, policy and attentional

factors that govern performance in a task.

Markov property: the mathematical assumption that transitions between states

depend only on the current state, not a decision agent’s entire history: p(si|si�1,

si�2, . . .)= p(si|si�1), where si is a state and p(si) is the probability of

transitioning to that state.

Markov structure: the set of transition probabilities p(sijsj) that defines the

relation between states in a space with the Markov property.

Policy: a mapping (potentially probabilistic) between environmental variables

such as states and values, and actions. Policies implicitly depend on world

models because not all world models share the same sets of variables.

Reinforcement learning (RL): a computational learning model in which

organisms adapt to an environment by incrementally altering behavior in

response to rewards and punishments.

State space: the collection of distinct possible conditions for an agent–

environment system in formal models of learning. States can be distinguished

by, among other factors: the number and type of available choices, the

information available to the agent, and the response properties of the

environment.
When has the world changed enough to warrant a new
approach? The answer depends on current needs, be-
havioral flexibility and prior knowledge about the envi-
ronment. Formal approaches solve the problem by
integrating the recent history of rewards, errors, uncer-
tainty and context via Bayesian inference to detect
changes in the world and alter behavioral policy. Neuro-
nal activity in posterior cingulate cortex – a key node in
the default network – is known to vary with learning,
memory, reward and task engagement. We propose that
these modulations reflect the underlying process of
change detection and motivate subsequent shifts in
behavior.

Learning in a changing world
Most days, you drive home along a familiar route but today
something unexpected happens: the city has opened a new
street that offers the possibility of a shortcut. Another day,
a new intersection sends you down an unexpected road.
Often a traffic jam alters the time it takes you to reach your
destination. Whether you are a human driving home, a
monkey foraging for food, or a rat navigating a maze,
unexpected changes in the world necessitate a shift in
behavioral policy (see Glossary): rules that guide decisions
based on prior knowledge and potentially promote learn-
ing. Changes force agents to engage learning systems,
switch mental states and shift attention, among other
adjustments, and recent work has examined their physio-
logical substrates [1,2]. Yet the loci of change detection
within the brain remain unidentified. Here we propose
that the posterior cingulate cortex (CGp) plays a key role
in altering behavior in response to unexpected change. It
could be that this region, which consumes more energy
than other cortical areas [3], must do so to keep pace with a
dynamically changing world.

Learning, change detection and policy switching
Since the discovery that dopaminergic neurons respond to
rewarding events by signaling the difference between
expected and received rewards, the so-called ‘reward pre-
diction error’ (RPE), theories of reinforcement learning
(RL) have dominated discussions of learning and condi-
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tioning [4,5]. In typical RL algorithms, learning is incre-
mental and only slowly converges on stable behavior [5]. In
an environment that rapidly alternates among several
fixed but distinct reward contingencies, crude RL agents
might find themselves forever playing catch-up and unable
to do more than gradually adjust in response to abrupt
transitions. At present, we know little about the neural
processes that underly rapid change detection: those that
switch between and those that initiate the learning of
behavioral policies. Such processes should accommodate
changes in the contingency structure of the environment
(state space and Markov structure) and in its distribution
of returns (volatility, outcomes and outliers). In the driving
example above, the new or diverted streets correspond to
changes in environmental structure and the traffic jam
corresponds to a change in the distribution of returns.

Standard RL fails to capture the ability of animals to
implement a wide array of strategies, each learned inde-
pendently, with minimal switching costs. For example,
drivers stuck in unexpected traffic do not gradually modify
World model or model: a set of states of the world, their transition relations,

and the distributions of outcomes from those states.
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Box 1. Bayesian learning

Recent studies have provided evidence that both humans and non-

human animals often employ sophisticated, model-based assump-

tions when learning about their environments [7,11,15]. That is,

agents first determine an appropriate set of constructs by which to

model the world, and then update the parameters of these models via

Bayesian inference.

The Bayesian approach to learning proves particularly useful when

modeling behavior in environments where the underlying parameters

are subject to change. The underlying link between stimuli and

outcomes can either change gradually in time [7,10] or shift suddenly

[11–13,77]. Such models are able to incorporate both prediction error

and surprise because they include full predictive distributions for

observed quantities thereby uniting aspects of both RL and atten-

tional learning [6].

Although we remain agnostic regarding specific implementations

of Bayesian learning, several key features are common to all models

[7]. First, updates to the means of model parameters are proportional

to the prediction error: the difference between observed and expected

outcomes. Second, these updates are scaled by the learning rate,

which depends on uncertainty: the width of the distribution of

parameter estimates (Figure I). This uncertainty itself depends on

the current estimate of environmental rate of change, allowing agents

to learn more slowly in stable worlds and incorporate new informa-

tion more readily in frequently changing contexts. Finally, agents are

expected to incorporate prior information through Bayes’ rule, forcing

them to fall back on model-based assumptions in the presence of

limited information or recent change.

However, full Bayesian approaches require intensive nonlinear

computation, highlighting the need for simple, online update rules

that approximate the full solution. Although models such as

probabilistic population codes solve the Bayesian inference

problem via neurons tuned to specific outcome variables [78], in

regions without such well-characterized tuning curves, memory

and processing constraints argue for trial-to-trial inference. In

many cases, techniques such as the Kalman filter offer optimal

solutions [8], whereas in others maximum likelihood estimates

serve as useful approximations [11,77]. We believe that the brain

uses a multitude of such approaches that can be matched to

environmental dynamics to produce ‘good enough’ Bayesian

behavior.
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Figure I. Bayesian update rules for learning Model parameters are initially estimated as prior distributions (black). When outcomes are observed, distribution means are

shifted by the product of learning rate, a, and prediction error, d, while variances change based on the estimated rate of environmental change (left). When the estimated

rate of environmental change is low (red), both mean updates and uncertainty (proportional to variance) are likewise small. When change is rapid (blue), means are

updated rapidly but uncertainty remains high.
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the typical route home but reselect from among multiple
alternatives based on expected delays, time of day and so
on. Although several classical theories of conditioning [6]
posit surprise (formalized as the absolute value of RPE) or
similar violations of expectation to dynamically adjust
behavior and learning rate, such models are still based
on the idea of a single policy subject to gradual updates. By
contrast, a change detection framework allows for multiple
behavioral policies by using statistical inference to distin-
guish expected variation from underlying environmental
shifts [7–11], allowing only the behaviorally relevant policy
to be deployed and learned. As a result, agents capable of
change detection, rather than forever reshaping a single
policy in the face of a dynamic environment, can instead
adapt rapidly by switching between behavioral policies.

This idea accords well with the rapid adjustment of
behavior to sudden changes in reward contingencies
[12,13], and operates similarly to theories of conditioning
that invoke Bayesian mechanisms to dynamically adjust
learning rates [7,14] (Box 1). In such scenarios, outcome
tracking not only adjusts the current strategy (and learn-
ing rate) but also determines whether or not environmen-
2

tal change warrants a switch to a different strategy
entirely. Reinforcement learning then operates as a sub-
process within the change detection system utilizing
Bayesian inference along with a suite of inborn or learned
models of the world [7,11,15].

Past hypotheses regarding CGp function
Despite extensive interconnections with memory, atten-
tional and decision areas (Box 2), the primary function of
the CGp remains mysterious. Indeed, no commonly recog-
nized unified theory for its role exists (Table 1). Clinical
evidence demonstrates that early hypometabolism and
neural degeneration in CGp predict cognitive decline in
Alzheimer’s disease [16,17], and CGp hyperactivity pre-
dicts cognitive dysfunction in schizophrenia [18]. Although
a host of experiments have identified the anterior cingulate
cortex (ACC) as crucial for processing feedback from indi-
vidual choices and subsequent alterations in behavior
[9,19–27], the functional role of CGp remains relatively
obscure.

To date, disparate evidence for CGp involvement in
cognitive and behavioral processes has thwarted simple



Box 2. Posterior cingulate cortex anatomy and physiology

Cingulate cortex as a whole has long been recognized as an

important site integrating sensory, motor, visceral, motivational,

emotional and mnemonic information [76]. CGp is the portion of

cingulate cortex caudal to the central sulcus. Although poorly

understood, this brain structure nevertheless consumes large

amounts of energy, making it one of the most metabolically

expensive regions of the brain [3]. CGp is reciprocally connected

with areas involved in attention – areas 7a, lateral intraparietal area

(LIP), and 7, or PGm/precuneus – as well as with brain areas involved

in learning and motivation, including the anterior and lateral

thalamic nuclei, the caudate nucleus, OFC and ACC (Figure I). CGp

also forms strong, reciprocal connections with the medial temporal

lobe, especially the parahippocampal gyrus, long known to be

crucial for associative learning and episodic memory (for a thorough

review of neuroanatomical connections, see [76]).

CGp  

LI P

ACC

FE

Medial

Lateral

 VTA

Thalamus OFC

SNc

AMYG

 NAC

PHG

PF C

F

Caudate

RSC

TRENDS in Cognitive Sciences 

Figure I. Figure shows medial (top) and lateral (bottom) views of the macaque

brain Significant neuroanatomical connections to and from CGp are shown.

Note that the figure does not represent a thorough diagramming of

innervations because CGp connects to a large number of brain regions.

Generally, CGp neuroanatomy is similar in humans and macaques [76].

Abbreviations: VTA, ventral tegmental area; SNc, substantia nigra pars

compacta; NAC, nucleus accumbens; PFC, prefrontal cortex; FEF, frontal eye

field; RSC, retrosplenial cortex; PHG, parahippocampal gyrus; AMYG,

amygdala.

Table 1. Proposed functions of CGp with selected references

Functional claims Refs

Evaluating sensory events and behavior

to guide movement and memory

[28]

Spatial learning and navigation [29,79]

Late stages of RL [80]

Orientation in time and space [81]

Autobiographical memory retrieval [30]

Emotional stimulus processing [31]

Reward outcome monitoring [40]

Representation of subjective value [32–34]

Problem solving via insight [64]

Mind wandering [68]

Action evaluation and behavioral modification [41]

Goal-directed cognition [35]
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functional characterization. Anatomical connections tome-
dial temporal lobe areas necessary for learning and mem-
ory, as well as to neocortical areas responsible for
movement planning, indicate that CGp links these areas
to store spatial and temporal information about the con-
sequences of action [28,29]. The involvement of CGp in
learning andmemory, however, seems to extend far beyond
the scope of movements and spatial orientation. Neuroim-
aging experiments have shown that CGp is activated by
emotional stimuli, particularly when they have personal
significance [30,31]. Neurons in CGp signal reward size,
and some studies have proposed that they encode the
subjective value of a chosen option [32–34]. The bulk of
recent CGp studies, however, have focused on its role in the
so-called ‘default mode network’: a set of interconnected
brain regions showing elevated BOLD signal at rest and
suppression during active task engagement [3].
Yet none of these proposed functional roles – mnemonic,
attentional, spatial and default – successfully captures the
full range of phenomena shown to modulate activity in
CGp. Taking a broader view based on both electrophysio-
logical and functional imaging evidence (summarized
below), we conjecture that many of these observed mod-
ulations reflect the contribution of CGp to signaling envi-
ronmental change and, when necessary, relevant shifts in
behavioral policy. In our scheme, suppressed CGp activity
favors operation within the current cognitive set, whereas
increased activity reflects a change in either environmen-
tal structure or internal state and promotes flexibility,
exploration and renewed learning. This proposed role for
CGp is consistent with converging evidence from imaging
studies that default network regions play an active role in
cognition when tasks require mental simulation and stra-
tegic planning [35–37], and lesion studies demonstrating
deficits in multitasking and set-shifting [38,39]. Although
this hypothesis pertains primarily to the contributions of
CGp to learning and decision making, we also provide
evidence to suggest that such an approach offers clues to
the broader role of the default network in cognition.

Change detection and policy control in CGp
CGp neurons not only respond in graded fashion to the
magnitude of liquid reward associated with orienting but
also respond to the unpredicted omission of these same
rewards [40]. In a choice task with one ‘safe’ option deliv-
ering a fixed liquid reward and one ‘risky’ option randomly
delivering larger and smaller rewards with equal proba-
bility [34,41], CGp neurons encoded not only reward size
but also reward variance [34]. Thus CGp neurons track
policy-relevant variables such as reward value as well as
estimates of variability within the current environment.

In this probabilistically rewarded choice task, monkeys’
behavior followed a win-stay lose-shift heuristic [41]. After
choosing the risky option, monkeys were more likely to
choose it again if they received a larger reward but
more likely to switch to the safe option if they received
the smaller reward. Firing rates of CGp neurons were
correspondingly higher following smaller rewards than
large rewards, and variability in responses predicted the
likelihood the monkey would switch its choice on the next
trial. Brief microstimulation in CGp increased the likeli-
hood monkeys would switch to the safe option after receiv-
3
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Figure 1. CGp encodes reward outcomes over multiple trials and predicts changes in strategy (a) Peri-stimulus time histogram (PSTH) for an example neuron following

reward delivery when monkeys choose between variably rewarded outcomes and deterministically rewarded outcomes with the same mean reward rate. Firing rates were

significantly greater following small or medium rewards than following large rewards. (b) Bar graph showing the average firing of all neurons in the population following

delivery of large, medium and small rewards. Firing rates are averaged over a 1 s epoch beginning at the time of reward offset (t=0). Tick marks indicate one standard error.

(c) Average effect of reward outcome on neuronal activity up to five trials in the future. Bars indicate one standard error. (d–f) Average neuronal firing rates as a function of

coefficient of variation (CV) in reward size plotted for three trial epochs in the probabilistic reward task. Firing increased for saccades into the neuronal response field (RF),

and was positively correlated with reward CV (standard deviation/mean). Bars represent SEM. Adapted from [41] and [34].
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ing a large reward – as if they had erroneously detected a
bad outcome [41]. Tonic firing rates in CGp maintained
information about previous rewards for several trials and
these modulations predicted future choices (Figure 1)
[34,41]. Taken together, these findings indicate that
CGp neurons encode environmental outcomes (rewards
and variance), maintain this information online (in a leaky
fashion), and contribute to adjusting subsequent behavior.

A follow-up study probed whether representation of the
need to switch applied beyond simple option switching to
policy changes more generally [42]. Monkeys performed a
variant of the k-armed bandit task in which reward
amounts for four targets varied independently on each
trial and slowly changed over time (Figure 2a,b) [8]. Be-
havior was characterized as following two distinct policies
– explore and exploit – that depended on the recent history
of rewards experienced for choosing each target [8]. Firing
rates of CGp neurons not only signaled single-trial reward
outcomes but also predicted the probability of shifting
between policies in graded fashion (Figure 2c–e). These
4

observations endorse the idea that CGp participates in a
circuit that monitors environmental outcomes for purposes
of change detection and subsequent policy switching [42].
Thus, even in a more complex environment where changes
in returns are gradual rather than sudden, the activity of
CGp neurons both tracks and maintains strategically rel-
evant information used to implement a change in behav-
ioral policy.

A model of change detection and policy switching in
cingulate cortex
In order for agents to learn and switch between distinct
strategies in response to environmental change, they must
detect the change through inference over behavioral out-
comes and adjust parameters within a given strategy.
Figure 3 depicts a schematic of one such change detection
and learning process.

In the model, outcome data from single events are
passed to the change detection system, which recombines
these variables into strategy-specific measures of Bayesian
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Figure 2. CGp neurons encode variance/learning rate and change probability in a volatile environment (a) Schematic of the four-armed bandit task. Four targets appear each

trial, each baited with an independently varying juice reward. (b) Sample payouts and choices for the four options over a single block. Reward values for each target

independently follow a random walk process. Black diamonds indicate the monkey’s choices during the given block. (c) PSTH for an example neuron in the four-armed

bandit task showing significant differences in firing for exploratory and exploitative strategies in both the decision and evaluation epochs. Exploit trials are in red, explore

trials in black. The task begins at time 0. Onset of the ‘go’ cue (dashed green line), reward delivery (unbroken red line), beginning of inter-trial interval (dashed gray line), and

end of trial (rightmost dashed black line) are mean times. Dashed red lines indicate � one standard deviation in reward onset. Shaded areas represent SEM of firing rates.

(d,e) Neurons in CGp encode probability of exploring on the next trial. Points are probabilities of exploring next trial as a function of percent maximal firing rate in the

decision epoch, averaged separately over negatively- and positively-tuned populations of neurons (d and e, respectively). (f) Numbers of neurons encoding relevant

variables in a Kalman filter learning model of behavior [8,42]. Bars indicate numbers of significant partial correlation coefficients for each variable with mean firing rate in

each epoch when controlling for others. The decision epoch (blue) lasted from trial onset to target selection; the post-reward epoch (red) lasted from the end of reward

delivery to the end of the inter-trial interval. Dashed line indicates a statistically significant population of neurons, assuming a P=0.05 false positive rate. Variance chosen

indicates the estimated variance in the value of the chosen option. Mean variance indicates the mean of this quantity across all options. (g) Mean absolute partial correlation

coefficients for significant cells. Colors are as in (f). Adapted from [42].
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evidence that the environment has changed. As in other
models of information accumulation [43,44], this signal,
representing the log posterior odds favoring a given hy-
pothesis (in this case, environmental change), increases
until reaching a threshold after which a ‘change’ signal is
broadcast, learning rates increase and the agent switches
strategy. In contrast to standard models of sensory evi-
dence accumulation, these decision signals are maintained
5
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Figure 3. A simplified schematic of change detection and policy selection Sensory feedback from reward outcomes is divided into task-specific variables and passed on to

both a RL module and a change detector. The learning module computes an update rule based on the difference between expectations and outcomes in the current world

model, and updates the policy accordingly. The change detector calculates an integrated log probability that the environment has undergone a change to a new state. If this

variable exceeds a threshold, then the policy selection mechanism substitutes a new behavioral policy that will be updated according to subsequent reward outcomes.
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acrossmultiple outcomes, and possess only a single thresh-
old as is appropriate for an all-or-none switching process
that allows full Bayesian inference to be reduced to a
simple update model [11]. Equally important, the decision
variables accumulated by the change detector can vary
between strategies depending on the expected distribution
of outcomes from the environment. That is, the correct
statistical test for agents to perform in change detection
depends not only on the environment but also on current
and alternative strategies. Thus in an environment where
the appropriate strategy depends heavily on the relative
frequency of outliers, the correct tracking statistic can be
neither themean nor the variance of outcomes but a simple
proportion of occurrence above a threshold. In such a
framework, the best statistic is the one that maximizes
the area under the receiver operating characteristic curve
for the strategy switching problem, balancing false posi-
tives against false negatives in accord with the cost-benefit
analysis that obtains in the current environment.

Physiologically, we tentatively identify areas such as
ACC, amygdala, and basal ganglia as encoding individual
event-related outcomes necessary for altering behavior
within a given strategy. These variables function as inputs
to both the gradual within-strategy (RL) learning system
and the change detection system, the latter of which could
include key default network areas such as CGp and the
ventromedial prefrontal cortex (vmPFC). These identifica-
tions are indicated by the demonstrated sufficiency of
midbrain dopaminergic signals for classical conditioning
[45], as well as the role played by cortical targets of these
signals in associative learning. For instance, the orbito-
6

frontal cortex (OFC) and ACC, which maintain strong
reciprocal connections with the basal ganglia [46,47], are
necessary for representing links between outcomes,
actions and predictive cues [26,48–51], as well as facilitat-
ing changes in action [19,24]. Furthermore, we hypothesize
that individual policies and policy selection are most likely
to be computed in dorsolateral prefrontal cortex, already
implicated in strategic decisionmaking and action plan-
ning [52,53], while long-term associative learning is imple-
mented via the hippocampus and surrounding structures.
Clearly, however, much work remains to validate both the
model and the identification of its individual functionswith
specific anatomical areas.

Evidence for such a process is depicted in Figure 2f,g.
There, we present a suggestive reanalysis of behavioral
and neural data from the above-mentioned bandit task [42]
using an expanded Kalman filter model (see supplementa-
ry material online). This Kalman filter improved our be-
havioral fits in all cases, and firing in CGp neurons
significantly tracked variability in the chosen targets
(equivalent to uncertainty; n=8/83, 9/83), RPE (n=15/83,
17/83) and learning rate (n=10/83, 10/83). These correla-
tions (variability: R=0.10 chosen option, RPE: R=0.10,
learning rate: R=0.10; mean absolute value of partial
correlation for significant cells) proved both stronger
and, in some cases, more numerous than those signaling
the difference between explore and exploit policies [42].
Indeed, such results are surprising because the task
itself contained no underlying noise to learn (apart from
the random walk). Additionally, cells that coded RPE
maintained this information for the duration of the trial
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indicating that single-trial outcome variables encoded in
ACC [54,55] are buffered for purposes of uncertainty esti-
mation and within-policy adjustment. These data not only
reaffirm that CGp encodes variability in options [34,40,41]
but also situate these signals within a broader online
learning framework. And although we note that such
results (both effect size and frequency) are strongly model
dependent, they bolster the hypothesis that CGp encodes
and maintains online variables related to the statistical
structure of dynamic environments. Nevertheless, direct
tests are needed in tasks where abrupt contingency
changes occur and in which change detection is necessary
for optimal behavior.

Change detection: an active role for the default mode
network?
Functionally, CGp in humans belongs to the ‘default net-
work’ of cortical areas that includes vmPFC and temporo-
parietal junction. These areas show high metabolic and
hemodynamic activity at rest that is suppressed during
task engagement [56]. Activation in the default network is
typically anticorrelated with activation in the dorsal fron-
toparietal network: a set of brain areas implicated in
selective attention and its concomitant benefits in accuracy
and task performance [57–59]. Monkeys show strikingly
similar patterns of spontaneous BOLD activity [60] and
single unit activity [61,62] within this network.

What has often gone missing in the discussion, howev-
er, is an active role for the default network in cognition.
One suggestion for this role is retrieval of information –

especially personally relevant information – from long-
term memory [63], a function that CGp, with its strong
connections to parahippocampal areas, is well situated to
perform. Another is that the default network could be
associated with divergent thinking patterns that lead to
insight and creative problem solving – a process that can
interfere with performance on many simple standard
laboratory tasks [64]. This possibility is closely linked
with the idea that default network activity is more associ-
ated with an ‘exploratory’ mode of cognition, and that
default suppression is associated with an ‘exploitative’
mode [8,42]. This accords well with a view in which chang-
ing between world models and task sets requires with-
drawal from task performance and a redeployment of
internally directed cognition for purposes of strategy re-
trieval and selection.

The centrality of CGpwithin the default network invites
the possibility that change detection could be a key sub-
function of default mode processing. Indeed, large-scale
environmental changes are likely to signal the need for
exploratory behavior. We recently reported that baseline
activity of CGp neurons is suppressed during task perfor-
mance, and that spontaneous firing rates predict subse-
quent task engagement on a trial-by-trial basis [62].
Specifically, higher firing rates predicted poorer perfor-
mance on simple orienting andmemory tasks [62], whereas
cued rest periods, in which monkeys were temporarily
liberated from exteroceptive vigilance, evoked the highest
firing rates. Importantly, local field potentials in the gam-
ma band, which has been closely linked to synaptic activity
(and by extension, the fMRI BOLD signal), were also
suppressed by task engagement. These results fit BOLD
signal measurements showing lower CGp activity during
task engagement [56,65–67]. Firing rates of CGp neurons
were likewise suppressed when monkeys were explicitly
cued to switch tasks but activity gradually increased on
subsequent trials indicating relaxation of cognitive control
[61].

The fact that CGp neurons track task engagement
supports the view that the characteristic functions of the
default network, including monitoring, are suppressed
when operating within a stable, well-learned environment.
By contrast, periods of rest can be accompanied by more
generalized exploratory behavior requiring reduced focus
and maximum flexibility. Even brief pauses in task perfor-
mance liberate agents, monkey or human, from the need
for focused task engagement thus permitting self-directed
cognition, cognitive housekeeping and mind wandering
[62,68].

Thus CGp and the default network could play a broader
role in basic cognitive processes typically suppressed dur-
ing performance of well-learned tasks, including memory
retrieval, internal monitoring, and the global balance of
internal versus external information processing. As a re-
sult, we predict CGp would respond most strongly during
the initial phases of learning, in response to sudden envi-
ronmental changes, and during self-initiated switches be-
tween behavioral policies. Conversely, we predict greatest
deactivations during performance of outwardly directed
effortful tasks that demand attention and engagement,
and a return to baseline during breaks between trials
[62], and even on repetitions of trials of the same type
that presumably demand less attention [61]. These
responses are quite distinct from those seen in other
cortical areas, especially the frontoparietal attention net-
work.

The prevalence of increased default network activity
outside task conditions in most studies would seem, on its
surface, to militate against our model, as does the obser-
vation that firing in CGp neurons decreases following
changes in the task at hand [61]. In fact, these responses
further bolster the common view that default activation is
simply the complement of activity in the frontoparietal
attention network [59]. However, more recent studies have
shown that in tasks requiring goal-directed introspection,
default network activity shows strong positive correlation
with activity in frontoparietal networks [35–37] indicating
that repetitive performance in well-learned tasks could
under-represent the role of default areas in active cogni-
tion. CGp lesions in both humans [38] and rodents [39]
result in deficits in tasks requiring implementation of new
strategies in multitasking scenarios and changes of cogni-
tive set. Indeed, in richer environments where altering
strategy requires periodically withdrawing from the cur-
rent cognitive set to evaluate and decide we expect to see
higher co-activation of default and attentional networks. In
the same way, we hypothesize that the deactivation ob-
served in animals switching between two well-learned
tasks [61] results from the fact that changes in task
demands were explicitly cued by the environment: no
evaluation of evidence or internal query was required.
In a task in which behavioral change requires first
7
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inferring the presence of a switch we predict increased
activity in CGp.

Extending the model
We have proposed that CGp is a key node in the network
responsible for environmental change detection and sub-
sequent alterations in behavioral policy. This proposed
network sits atop the RLmodule in the cognitive hierarchy
enabling organisms to learn and implement a variety of
behavioral responses to diverse environmental demands,
and to refine each independently and employ them adap-
tively in response to change.

This model makes several key predictions. First, CGp
activity should show pronounced enhancement in scenar-
ios that demand endogenously driven, as opposed to ex-
ogenously cued, changes in behavior. That is, when
statistical inference becomes necessary to detect environ-
mental change and alter behavior, CGp should show a
concomitant rise in firing rate as evidence mounts, fol-
lowed by a gradual fall-off as behavior crystallizes into a
single policy. Naturally, this behavior requires that infor-
mation be maintained and integrated across trials, and
thus that firing rates in the present exhibit correlations
with outcomes in the past. Likewise, set shifts resulting
from inferred change points should elicit stronger mod-
ulations in CGp activity than cued change points because
the latter require no integration of evidence. Consistent
with this prediction, in a task-switching paradigm with
random and explicitly cued switches [61], suppression of
CGp firing reflected both task engagement and task
switching presumably because change detection could
not rely on statistical inference.

Second, the process of learning entirely new associa-
tions should enhance CGp activity. This follows not only
from anatomical connections between CGp and parahip-
pocampal gyrus, which is necessary for long-term memory
formation [69,70], but also from conditioning experiments
showing enhanced CGp activity during learning [71]. We
predict that CGp activity will be more strongly modulated
by new cues that predict environmental changes that
require a cognitive set switch than by new cues that are
irrelevant to set shifts.

Finally, the change detection hypothesis opens up new
avenues for probing default network function. If the mod-
ulations in BOLD activity in fMRI studies merely repre-
sent, as we predict, one end on a continuum of resource
allocation, then the idea of changes in cognitive set could
offer a new perspective on default mode activation. In this
framework, default network areas could be crucial for
initiating transitions between basic modes of behavior,
or even overriding them. This could be particularly rele-
vant in schizophrenia, in which patients exhibit hyper-
vigilance to behaviorally salient events in the environment
but simultaneously show a diminished ability to ‘turn
down’ the internal milieu [72,73]. Likewise, early degen-
eration in CGp in Alzheimer’s disease could cripple a key
node in the interface between cognitive set and memory
networks resulting in disorientation and impairedmemory
access [74,75]. Together, these observations indicate a
healthy CGp is necessary for organizing flexible behavior
in response to an ever-changing environment bymediating
8

learning, memory, control, and reward systems to promote
adaptive behavior.
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