
Please cite this article in press as: Pearson et al., Neurons in Posterior Cingulate Cortex Signal Exploratory Decisions in a Dynamic
Multioption Choice Task, Current Biology (2009), doi:10.1016/j.cub.2009.07.048
Neurons in Posterior Cingula
Current Biology 19, 1–6, September 29, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.07.048
Report
te Cortex

Signal Exploratory Decisions
in a Dynamic Multioption Choice Task
John M. Pearson,1,* Benjamin Y. Hayden,1

Sridhar Raghavachari,1 and Michael L. Platt1,2

1Department of Neurobiology, Duke University School of
Medicine and Center for Neuroeconomic Studies
2Center for Cognitive Neuroscience and Department of
Evolutionary Anthropology
Duke University, Durham, NC 27710, USA

Summary

In dynamic environments, adaptive behavior requires
striking a balance between harvesting currently available

rewards (exploitation) and gathering information about alter-
native options (exploration) [1–4]. Such strategic decisions

should incorporate not only recent reward history, but also
opportunity costs and environmental statistics. Previous

neuroimaging [5–8] and neurophysiological [9–13] studies
have implicated orbitofrontal cortex, anterior cingulate

cortex, and ventral striatum in distinguishing between bouts
of exploration and exploitation. Nonetheless, the neuronal

mechanisms that underlie strategy selection remain poorly
understood. We hypothesized that posterior cingulate cor-

tex (CGp), an area linking reward processing, attention
[14], memory [15, 16], and motor control systems [17], medi-

ates the integration of variables such as reward [18], uncer-
tainty [19], and target location [20] that underlie this dynamic

balance. Here we show that CGp neurons distinguish be-

tween exploratory and exploitative decisions made by mon-
keys in a dynamic foraging task. Moreover, firing rates of

these neurons predict in graded fashion the strategy most
likely to be selected on upcoming trials. This encoding is

distinct from switching between targets and is independent
of the absolute magnitudes of rewards. These observations

implicate CGp in the integration of individual outcomes
across decision making and the modification of strategy in

dynamic environments.
Results

To probe the neuronal processes mediating the strategic
balance of immediate reward and information acquisition, we
recorded the activity of single cingulate cortex (CGp) neurons
in two rhesus macaques performing a ‘‘restless’’ variant of the
four-armed bandit for juice rewards [3, 5] (Figure 1). This
variant provides a high level of environmental variability with
a behaviorally tractable number of options. On each trial, mon-
keys chose one of four targets whose payoffs were randomly
selected from distributions centered about their values on
the previous trial. Once a target was chosen, monkeys in prin-
ciple had perfect knowledge of its present value (there was no
added variance in payouts), though the values of all targets
changed each trial. As a result, monkeys had to select an
option to learn its current value and integrate this information
*Correspondence: pearson@neuro.duke.edu
with their statistical knowledge of the environment to predict
its relative value on upcoming trials.

Both monkeys were highly adept at optimizing reward. They
earned 92% and 91%, respectively, of the total reward that
would have been earned by an omniscient observer. Neverthe-
less, despite this high level of performance, a perfectly greedy
decision maker, focused on the option with highest immediate
value, would have harvested more, though not all, available
reward (see Supplemental Data available online).

More importantly, nothing intrinsic to the task design serves
to distinguish exploratory from exploitative decisions. On each
trial, both monkeys simply selected among the four available
options and received a reward. As a result, individual decisions
must be classified as exploratory or exploitative according
to a model-based analysis of each monkey’s behavior, with
model parameters chosen to maximize the likelihood of ob-
served choices. We report here only results based on our
best-fitting Kalman filter model, though results were similar
for other models as well (see Supplemental Data).

We analyzed the firing rates of 83 single neurons in CGp in
both monkeys performing the four-armed bandit task (59
from monkey N and 24 from monkey B). We focused on two
trial epochs, a 2 s decision epoch (DE; 1 s before trial initiation
extending to juice delivery) and a 2 s postreward evaluation
epoch (EE; from the offset of juice delivery through the intertrial
interval). Analyses based on mean firing rates in each epoch
readily identified neurons that discriminated between the two
strategies (14%, n = 12/83, DE; 16%, n = 13/83, EE; p < 0.05,
Mann-Whitney U test), with 22% of neurons doing so in at least
one epoch (n = 18/83; p < 0.025, Bonferroni-corrected Mann-
Whitney U test).

Figure 2A depicts the average firing rate of a single neuron
on trials classified as either exploratory or exploitative. Re-
sponses on exploit trials were significantly higher in both deci-
sion and evaluation epochs (Mann-Whitney U test, p < 0.01). In
contrast, the neuron whose activity is plotted in Figure 2B was
more responsive on exploratory trials in both epochs (Mann-
Whitney U test, p < 0.01). Although the population as a whole
exhibited slightly higher firing on exploratory trials in both
epochs (modulation index = 0.0084 [DE], 0.0026 [EE]), the
population of cells with significant modulation was mixed
(modulation index = 0.046 [DE], 20.011 [EE]), indicating het-
erogeneity in single-cell responses to the different strategies.
Thus, firing rates in CGp distinguish between upcoming
exploratory and exploitative decisions in the epoch leading
up to selection and continue to reflect that choice during the
postreward delay.

We previously reported that responses of CGp neurons
predict impending switches from one option to another on
the next trial in a simple two-alternative task [11]. Based on
that finding, we hypothesized that CGp neurons would also
carry predictive information about more general impending
choices of strategy. To test this hypothesis, we regressed the
probability of exploration on the upcoming decision as a func-
tion of observed firing rate for each neuron. Of the 83 neurons
in our sample, about 16% showed significant correlations
between firing rate during the decision epoch and the proba-
bility of exploration on the ensuing choice [n = 13, p < 0.05,
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Figure 1. Task and Example Reward Schedule

Used to Study the Explore/Exploit Dilemma

(A) Schematic of the four-armed bandit task.

Following a 0.5 s fixation period, the central cue

disappears, replaced by four colored targets.

Subjects indicate choices by shifting gaze to

targets, after which the chosen target is high-

lighted in green for 1 s and a juice reward is deliv-

ered. Consecutive trials are separated by a 1 s

intertrial interval. Every 60 trials, a block change

cue appears, and all target values are reset to

the mean reward value.

(B) Sample payouts and choices for the four

options over a single block. Reward values for

each target follow a random walk with fixed stan-

dard deviation for step size, biased toward the

mean of 150 ms. Black diamonds indicate

choices made by the monkey during the given

block.

(C) Sample monkey B choice behavior over two

blocks of the four-armed bandit task. Bar colors

indicate target chosen; bar heights indicate the

values of rewards received. The horizontal line

indicates the mean reward value. Monkeys ex-

hibit bouts of exploitation of favorable targets

with exploration of alternatives. Arrows indicate

trials that might plausibly be classified as either

exploratory or exploitative, depending on the

behavioral model used. Both involve a change

in target selected (action switch) but also a return

to a target with high remembered value and so

might be classified as exploitative.
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Mann-Whitney U test; p(n > 12) < 0.001, binomial test]. Even
more importantly, 16% of neurons showed a correlation
between firing during EE and the probability of exploration
on the following trial [n = 13 p < 0.05, Mann-Whitney U test;
p(n > 12) < 0.001, binomial test], suggesting that CGp differen-
tially signals the probability of strategic decisions within
a block of trials. Figures 2C and 2D depict the separate popu-
lation averages for the subsets of cells whose activity corre-
lated negatively (n = 6) and positively (n = 7) with exploration.
Average response for each of these two groups of neurons
strongly predicted probability of impending strategic choices
in a graded fashion.

One potential confound of these results arises from the link
between exploitation and the likelihood of increased reward.
Because we might expect that exploitative choices, on
average, yielded higher rewards, a possible alternative inter-
pretation of the present data is that effects of strategy on
neuronal activity are reducible entirely to neuronal sensitivity
to reward value. To investigate this
possibility, we calculated and fit reward
size tuning curves for each of our 83
neurons (Figures 3A and 3B). Consistent
with previous studies [11, 18], we found
that the firing rates of CGp neurons
during the decision epoch varied with
the amount of reward received on the
previous trial (DE, n = 39, p < 0.05, F
test for quadratic regression) and that
firing rates in the evaluation epoch
varied with the amount just received
(EE, n = 44, p < 0.05, F test). Over the
range of experienced reward values
(50–350 ml), we found a heterogeneity of
tuning curves: some were linear (n = 14 positive, 6 negative,
DE; n = 18 positive, n = 9 negative, EE; p < 0.05 nonzero regres-
sion coefficient), whereas others were U-shaped, both
concave up (n = 8, DE; n = 8, EE; p < 0.05 nonzero regression
coefficient) and concave down (n = 11, DE; n = 9, EE; p <
0.05 nonzero regression coefficient). We therefore restricted
our next series of analyses to those trials where monkeys
adopted different strategies but received the same amount
of reward. We found that 12% [n = 10; p(n > 9) < 0.001, binomial
test] of recorded neurons still showed different mean firing
rates on explore versus exploit trials (p < 0.01, Bonferroni-cor-
rected Mann-Whitney U test). Data for an example neuron
showing this effect are shown in Figures 3D–3F. Here, the
middle third of reward values have been subdivided into three
categories (medium-low, medium-medium, and medium-
high), and neuronal firing is plotted as a function of time for
both explore and exploit trials, controlled for received reward.
This neuron, like many others in our population, showed clear
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A Figure 2. Neurons in CGp Distinguish between Exploration

and Exploitation

(A and B) Sample neurons (neurons 62 and 12) with significant

differences in firing during explore and exploit trials for both

the decision and evaluation epochs, with firing aligned to trial

onset. Individual cells might prefer either explore (black) or

exploit (red) trials. The task begins at time 0. Onset of ‘‘go’’

cue (dashed green line), reward delivery (solid red line),

beginning of intertrial interval (dashed gray line), and end of

trial (second dashed black line) are mean times. Dashed red

lines indicate 6 one standard deviation in reward onset.

Shaded areas represent standard error of the mean (SEM).

(C and D) Neurons in CGp encode probability of exploring on

the next trial. Points are probabilities of exploring next trial as

a function of percent maximal firing rate in the decision epoch,

averaged over negatively and positively tuned populations of

neurons (C and D, respectively). Error bars represent SEM.
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sensitivity to strategy even when we controlled for the value of
the reward the monkeys received.

Two other possible confounds arise from the known spatial
tuning of CGp and the close relationship between exploration
and simply switching between targets. As reported previously
[21], we found that 63% of neurons were tuned for the location
of the target chosen (n = 52/83, p < 0.05, one-way analysis of
variance of mean firing rates for each target over all trials; see
Supplemental Data). Across the population, 39% of neurons
were significantly tuned for both reward size and target loca-
tion [18], whereas 23% were tuned for neither (EE; 34% and
24%, respectively, in DE). However, the population as a whole
showed no consistent target tuning across trials (p > 0.2, one-
sample t test for contralateral and upper-hemifield tuning
indices). In the case of target switching, because repeatedly
choosing a poor target is not necessarily exploitative (if higher
reward has recently been sampled elsewhere), there is not
a strict one-to-one correspondence between exploitation
and perseveration or between exploration and switching. As
a result, our task design allows for the possibility
of disambiguating these phenomena.

Indeed, a partial correlation analysis of neuronal
firing rates and upcoming decisions (firing rate
in DE for decision in current trial; firing rate in EE
for decision in following trial) that controlled for
the effects of reward tuning, spatial tuning, target
switching, and previous explore/exploit decision
revealed significant correlations in 12% of neurons
[n = 11, DE; n = 10, EE; p < 0.05 Spearman partial
correlation; p(n > 9) < 0.01, binomial test]. Thus,
even when all known effects on firing rate were
accounted for, a significant number of neurons
still exhibited clear predictive correlations with
upcoming strategy. Collectively, these results
indicate not only that single neurons in CGp
receive information about both previous rewards
and previous choices [19] and maintain that
information across trials [11, 19], as reported
previously, but that these same neurons also carry
signals related to dynamic changes in choice
strategy in a multiplexed format.

Discussion

We found that, when choosing among multiple tar-
gets whose relative values changed dynamically,
neurons in posterior cingulate cortex signaled the distinction
between trials on which monkeys pursued an exploratory
rather than an exploitative strategy. This signal was robust
against classifications of trials based on differing models of
behavior, including a perfectly greedy strategy and a simple
heuristic based on comparison to a reward threshold (see
Supplemental Data). More importantly, single neurons signaled
in graded fashion the probability of pursuing each strategy on
upcoming trials.

Previous work has shown that CGp neurons are sensitive to
reward [18], risk [19], and option switching [11] and integrate
this information across multiple trials [11], but the present
study generalizes the decision environment to one in which
exploration and exploitation are distinguishable from a simple
‘‘win-stay/lose-shift’’ heuristic [11, 22] based only on the most
recent reward received and in which outcomes must be evalu-
ated in light of multiple options with dynamically changing
rewards. As a result, relatively bad outcomes in rich environ-
ments might be acceptable under circumstances where all
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Figure 3. Reward Sensitivity of CGp Neurons Does Not Explain Sensitivity to Strategy

(A and B) Sample tuning curves from single neurons, showing firing as a function of reward received. Neurons display both positively and negatively mono-

tonic tuning, as well as parabolic tuning (both concave up and concave down).

(C) Histogram of quadratic regression coefficients. Positive values are concave up, as in (B). White bars represent neurons with significant overall regres-

sions, as determined by F test. Black bars represent the subset of this population with significant coefficients for quadratic tuning.

(D–F) Sample neuron (cell 12) firing rates on explore and exploit trials, controlled for low, medium, and high reward and aligned to reward onset. Bins are

defined as follows: low, 115–135 ms; medium, 140–160 ms; high, 165–185 ms. In (D), the low case, the difference in mean reward sizes between explore and

exploit conditions is 5 ms; in (E) and (F), the difference is less than 2 ms. Shaded regions represent SEM.
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alternatives are poor and searching for better options necessi-
tates choosing among several competing alternatives, each
with a distinct reward history. Strategic decisions in such an
environment thus require greater abstraction and integration
of information than in comparatively static contexts because
no single variable (or single trial) contains sufficient informa-
tion on which to base a decision.

Together, these results invite the hypothesis that CGp is part
of a network that monitors the outcomes of individual deci-
sions and integrates that information into higher-level strate-
gies spanning multiple choices. Thus, although the prolonged
time courses of firing-rate changes in CGp are unlikely to be
responsible for decisions on individual trials, their tonic activity
levels might be responsible for encoding the gradual accumu-
lation of information that gives rises to changes in strategy.
However, we do not expect that this integration of single-trial
history with strategic information is limited to CGp, nor is
this its sole function. For example, Daw et al. [5] found that
exploratory decisions are associated with activation in frontal
polar cortex and intraparietal sulcus, whereas exploitative
decisions are associated with activity in striatum. We specu-
late that information about individual rewards and reward
predictions is initially computed in striatum, orbitofrontal
cortex, and medial prefrontal cortex; subsequently combined
with recent reward outcome and choice history and main-
tained online in CGp; and finally passed to the anterior
cingulate cortex (ACC), where it is utilized in the selection of
appropriate actions. Moreover, reciprocal connections be-
tween ACC and CGp might play a role in learning which combi-
nations of single-trial variables are most relevant when
deciding among strategies to maximize reward.

In this framework, recent reward history, computational
difficulty, stimulus novelty, memory load, and the statistics
of the environment are distilled into a small number of task-
related decision variables for the purposes of encoding and
selecting among potential actions. Thus, individual neurons
that compose this network would be expected to display
sensitivity to the many single-trial variables like risk, reward,
and spatial location that serve as its inputs. We found that
these variables are represented multimodally by neurons in
CGp. As a result, we suspect that CGp might play a key role
in the process of learning the combinations of stimuli and
accumulated statistics most relevant to making decisions,
analogous to its role in simple conditioning [23–25]. This is in
keeping with our observation of increased firing rates in
response to block boundaries, near-threshold decisions, and
aborted trials in the bandit task, as also observed in ACC
[12]. If so, CGp dysfunction might be related to deficiencies
in memory-guided learning and action selection observed in
disorders like Alzheimer’s disease and obsessive-compulsive
disorder, and its proper function might be crucial to the flexible
adaptation of strategy in response to changing environments.
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Experimental Procedures

Surgical Procedures

All procedures were approved by the Duke University Institutional Animal

Care and Use Committee and were conducted in compliance with the Public

Health Service’s Guide for the Care and Use of Animals. Two rhesus

monkeys (Macaca mulatta) served as test subjects for recording. A small

prosthesis and a stainless steel recording chamber were attached to the

calvarium. The chamber was placed over CGp at the intersection of the in-

teraural and midsagittal planes. Animals were habituated to laboratory

conditions and trained to perform oculomotor tasks for liquid reward.

Animals received analgesics and antibiotics after all surgeries. The chamber

was kept sterile with antibiotic washes and sealed with sterile caps.

Behavioral Techniques

Monkeys were familiar with the task. Eye position was sampled at 1000 Hz

(camera, SR Research). Data were recorded by a computer running

MATLAB (The Mathworks) with Psychtoolbox [26] and Eyelink [27]. Visual

stimuli were squares (6� wide) on a computer monitor 50 cm away. A sole-

noid valve controlled juice delivery. Juice flavor was the same for each

target.

On every trial, a central cue appeared and stayed on until the monkey

fixated it. Fixation was maintained within a 1�–2� window. After a brief delay,

the central cue disappeared and the four targets were displayed in the

corners of the screen. Targets appeared in the same location each trial. After

selection of a target, its border was illuminated and reward was delivered,

followed by a 1 s intertrial interval. Rewards varied from 40 ms to 280 ms

of solenoid open time in 5 ms increments (50–350 ml, in 7.5 ml increments).

Juice volumes were linear in solenoid open time, and we have previously

shown that monkeys discriminate juice volumes as small as 20 ml [18]. All

target values began at 200 ml and reset each block. Blocks were 60 trials

long and were cued by the appearance of a gray square in the center of

the screen. Reward values for all targets changed each trial according to

a biased random walk (see Supplemental Data).

Microelectrode Recording Techniques

Single electrodes (Frederick Haer Co.) were lowered under microdrive guid-

ance (Kopf) until the waveforms of one to three individual neurons were iso-

lated. Individual action potentials were identified by standard criteria and

isolated on a Plexon system. Neurons were selected on the basis of the

quality of isolation, but not on selectivity for the task. Recordings were

made in areas 23 and 31 in the cingulate gyrus and ventral bank of the cingu-

late sulcus, anterior to the intersection of the marginal and horizontal rami.

Statistical Methods

We used an alpha of 0.05 as a criterion for significance. Peristimulus time

histograms (PSTHs) were constructed by aligning spikes to trial events,

averaging across trials, and smoothing by a Gaussian filter with 50 ms stan-

dard deviation. Shaded regions in PSTHs represent the standard error of the

mean (6 SEM), also Gaussian smoothed. Firing-rate modulation indices

were calculated in each epoch as m = ðfexplore 2 fexploitÞ=ðfexplore + fexploitÞ,
where f is the firing rate averaged over the relevant subset of trials. Behav-

ioral parameters were fitted by custom scripts written with the MATLAB

Optimization Toolbox (The Mathworks). Details of modeling can be found

in Supplemental Data.

Firing-Rate Analysis

Analyses utilized a binary, model-based classification of choices on each

trial as exploratory or exploitative (see Supplemental Data). We tested for

significant differences in firing rates in both the decision and evaluation

epochs as a function of the explore/exploit classification of the decision

on the current trial (that is, effects on DEn and EEn as a function of xn, where

xn is the binary explore/exploit variable). We also tested for predictive corre-

lations between firing in one epoch and upcoming decision (DEn with xn and

EEn with xn+1). To do this, we binned firing rates for each neuron into deciles

of percent maximal firing and examined the percentage of exploratory deci-

sions made subsequent to epochs with firing rates in each bin. This allowed

us to construct a probability of exploration as a function of percent maximal

firing, which we averaged across significant cells of each tuning.

Our reward controls were performed by grouping the 45 distinct reward

values into nine bins and comparing firing rates within each bin during the

evaluation epoch on explore and exploit trials. Significance levels utilize

a Bonferroni correction for the number of tests performed, which varied

(not all bins contained an explore or exploit trial). Our reward-controlled
plots grouped the 15 middle rewards into three groups of five, denoted

medium-high, medium-medium, and medium-low.

Our partial correlation analyses correlated (raw, unbinned) firing rate in

a given epoch (DEn or EEn) with the upcoming explore/exploit decision (xn

and xn+1, respectively). In each case, the correlation is controlled for spatial

location (split into two variables, one for upper versus lower hemifield and

one for left versus right hemifield, each taking values 6 1), previous received

reward (rn21 and rn, respectively), chosen target switch (binary; sn and sn+1,

respectively), and previous explore/exploit choice (xn21 and xn, respec-

tively). Correlations were calculated as Spearman rank correlations and

so allow for generic monotonic relations among variables.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures, six

tables, and five figures and can be found with this article online at http://

www.cell.com/current-biology/supplemental/S0960-9822(09)01474-2.
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