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Curiosity refers to a demand for information that has no

instrumental benefit. Because of its critical role in development

and in the regulation of learning, curiosity has long fascinated

psychologists. However, it has been difficult to study curiosity

from the perspective of the single neuron or the circuit – that is,

at the systems level. Recent advances; however, have made

doing so more feasible. These include theoretical advances in

defining curiosity in animal models, the development of tasks

that manipulate curiosity, and the preliminary identification of

circuits responsible for curiosity-motivated learning. Taken

together, resulting scholarship demonstrates the key roles of

executive control, reward, and learning circuits in driving

curiosity and has helped us to understand how curiosity relates

to information-seeking more broadly. This work has

implications for mechanisms of reward-based decisions. Here

we summarize these results and highlight important remaining

questions for the future of curiosity studies.
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Introduction
Pitfall is a classic Atari game in which a player must

navigate an avatar around a virtual screen to explore and

score points [1]. Although a typical seven-year old can do

quite well at the game with minimal practice, well-trained

deep learning agents that can master many Atari games

were unable to score even a single point until 2019 [2].

The reason is that Pitfall is a ‘hard-exploration’ problem –

it has several factors that punish learning styles of typical

deep learning agents [3]. Importantly, survival for animals

in the real world has many of the same features, meaning

that life, in general, is likely also a hard-exploration
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problem. AI agents can now beat the best humans at

Pitfall and the key innovation was endowing them with

features that mimic curiosity, especially an internal

reward for simply gaining information [2,4]. Curiosity,

it seems, may be an indispensable element in our cogni-

tive repertoires [5–8].

That is not to say we now know all we need to about

curiosity. There are many ways in which AI curiosity is

inferior to the evolved, biological kind (discussed, for

example, in Ref. [2]). Moreover, we have yet to learn how

to harness curiosity to improve our educational systems,

with corresponding benefits for human welfare

[9��,10,11]. And we have yet to harness the study of

curiosity for diseases associated with aberrant patterns

of curiosity and information-seeking [12]. Nor do we

know much about how different taxa differ in how their

curiosity is deployed. Clearly, a greater understanding of

curiosity is called for.

For these reasons, understanding the neural basis of

curiosity has become an important issue in cognitive

neuroscience. Indeed, in recent years, there has been a

growing number of curiosity-related studies in psychol-

ogy and cognitive neuroscience [6,8,13–17,18��]. The

study of curiosity has lagged, however, in branches of

neuroscience concerned with how neurons perform task-

relevant computations (i.e. systems neuroscience). How-

ever, because neural activity is the ultimate driver of

behavior, such understanding is critical for a full account-

ing of the mechanisms of curiosity in the field.

Defining curiosity
One major barrier to understanding curiosity has long

been the difficulty of defining it. Most definitions have

tended to be heuristic. We have argued that this is a good

thing – that definitions need to wait for sufficient empiri-

cal advances because we need to know what it is before

we can precisely define it [8]. Nonetheless, there is still

value in makeshift definitions. They allow us to do the

types of experiments that will allow further work. This is

especially important in animal models, which currently

provide the best tools for systems neuroscience, but

cannot provide reports about internal states and motiva-

tions (i.e. how curious they feel). We therefore have

developed a rough-and-ready definition [19,20��] that is

inspired by an integrative reading of the recent literature

and especially by the foundational work of Loewenstein,

who described curiosity as a drive to fill perceived gaps in

knowledge (i.e. uncertainty) [6,14,15,21].
www.sciencedirect.com
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Our proposal is that a research subject demonstrates

curiosity if it (i) is willing to pay a real price solely for

information, (ii) that information is demonstrably non-

strategic, and (iii) the subject’s demand scales with the

amount of information (over some range) [19,20��]. This

definition has limitations; in particular, it is overly con-

servative (i.e. it rejects many likely cases of curiosity), and

it assumes that subjects have acquired and are using the

correct model of the task/environment in directing their

information-seeking behaviors (i.e. behaviors that reduce

uncertainty about the world), such that they understood

that the information was non-strategic. However, we

believe this definition is valuable for the time being.

The observing task
Among non-human animal tasks that generally satisfy

criteria for curiosity, and thus is important for systems

neuroscience, the observing task has proven to be especially

useful (Figure 1) [22–28,29��]. In this task, the decision-

maker is faced with risky options, where resolution (that is,

the information about the gamble’s outcome) takes place

after some delay relative to the choice. The decision-maker

then has the opportunity to choose an option that provides

earlier resolution but does not affect the reward’s probabil-

ity, size, or timing. Preference for this observing option can

be taken as an indicator of curiosity. This task neatly
Figure 1
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Observing task used in rhesus macaques [41]. (a) Schematic of the comput

each trial between 50/50 gambles with differing and randomly chosen stake

color) promise gamble resolution immediately after choice; uninformative on

Stochastic reward occurs after 2.25 s regardless of choice. (b) Behavior of 

(equivalence point) for informative and uninformative options. Both subjects

shown) and the value of that information increased roughly linearly with the 
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excludes strategic information-seeking because the reward

itself is dispensed at the same time regardless of choice.

It is important to note that this task is no magic bullet.

Indeed, there is residual debate about whether informa-

tion-seeking behavior in the task reflects curiosity

[30,31,32��]. Specifically, the apparent preference for

advance information could be accounted for by greater

levels of attentional engagement on informative trials,

leading to increased associative learning for informative

cues, and thus promoting their choice even in the absence

of curiosity [30]. The general argument is plausible, and

differential attention may explain some of the effect;

however, it appears insufficient to explain several results

[20��,33��,34��]. To give one example, lateral habenula

neurons reliably signal information prediction errors for

informative as well as uninformative cues, indicating that

animals do not forget their reward predictions due to task

disengagement even in uninformative trials [35].

In a different RL-inspired critique, Iigaya et al. [31]

propose that viewing information provides a boost to

the value of anticipating primary reward, which can be

thought of as a time-dependent savoring effect that

increases the overall value of a primary reward, and does

not require curiosity. This proposal is supported by both

behavior [31] and neuroimaging data [32��] This model,
choice reward ITI (750 ms)
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erized version of the observing task. Macaque subjects choose on

s (indicated by size of inscribed white bar). Informative offers (cyan

es (magenta color) promise task-irrelevant decoy information.

two example subjects on the task. Y-axis indicates indifference point

 placed value on advance information (as did a third subject, data not

stakes of the gamble.
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while likely valid, seems unlikely to fully explain observ-

ing behavior; for example, it cannot explain willingness to

pay for counterfactual information, a hallmark of human

curiosity that is also demonstrated in monkeys [20��,36��].

Functional neuroanatomy of curiosity
Functional neuroanatomical studies have generally dem-

onstrated the critical importance of regions involved in (1)

reward, (2) learning/memory, and (3) control – a finding that

is reassuring ifnot surprisinggiven thatcuriositycan roughly

be defined as the control of self-motivated learning.

Reward areas

Neuroimaging literature supports the involvement of the

three ‘usual suspects’ reward regions — dopaminergic

midbrain, striatum, and the ventral orbital surface — in

curiosity. In perhaps the first neuroscientific study of

human curiosity, Kang et al. reported activation in the

striatum when subjects were anticipating the answer to a

trivia question that they were curious about [37]. Since

then, several studies have reported activation in the

midbrain and striatum in anticipation of information

through a variety of tasks including trivia, lottery, and

observing tasks [33��,38,39��]. These results, along with

others, support the idea that curiosity works by comman-

deering the brain’s usual reward regions to drive informa-

tion-seeking (i.e. behavior that reduces uncertainty about

the world). In other words, curiosity works just like any

other motivated process [40–44].

Electrophysiological results support the involvement of

reward areas in curiosity and provide insight into computa-

tional processes. Bromberg-Martin et al. used the observing

task to understand the role of midbrain dopamine (DA)

neurons incuriosity [28]. In that study, rhesusmacaqueshad

to choose between two risky options that were equivalent

except that one option resolved outcome uncertainty early

(2.25 s). The critical finding of the study was that dopami-

nergic midbrain neurons that responded to the expectation

of primary reward also responded to the expectation of

receiving information. This suggested that reward-seeking

and information-seeking share a ‘common currency’ or

neural code – or, perhaps, that curiosity and non-curiosity

motivation converge at the level before the DA system.

In a follow-up study, Bromberg-Martin et al. used a similar

task, but included an option that only revealed outcome

information 50% of the time [35]. This allowed them to

calculate information prediction errors (IPEs) when mon-

keys chose the semi-informative option and were unex-

pectedly delivered or denied information (this is analo-

gous to how the brain calculates reward prediction errors,

RPEs, from the delivery or denial of primary reward). The

critical finding of this study was that a subpopulation of

neurons in the lateral habenula (LHb), a subcortical

reward structure, signaled IPEs in addition to conven-

tional RPEs. This result further supported the subcortical
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‘common currency’ hypothesis. Moreover, because of

projections from LHb to the midbrain DA system, these

results presented the start of a possible hierarchical ana-

tomical pathway along which curiosity representations are

transformed into choices.

In a related study performed in our lab, we examined

responses in the orbitofrontal cortex (OFC, area 13) while

monkeys performed a version of the observing task with

titrated rewards [45]. This is a brain region associated with

valuation processes, but also, to some extent, with exec-

utive ones [46–48]. This task allowed us to assess the

specific value of information for each subject. We found

that subjects were willing to pay up to 20–30% of their

regular reward intake for advance information. We found

that instantaneous firing rates of neurons in this region

encode both the value of information (on a continuous

scale) and the value of the primary (liquid) rewards, but

use orthogonal ensemble coding formats to do so. This

fact indicates that OFC tracks multiple influences on

choice, but does not integrate them into a coherent

abstract value variable, and suggests that such integration

into an abstract value variable, if it occurs, takes place in a

downstream structure. (Note that a good deal of evidence

supports the idea that the midbrain DA system is

downstream of OFC [49–51]. More broadly, these results

fit into theories about hierarchies in reward processing

[52–56].

Our data also bear on the debate about the causes of

information-seeking. On one hand, subjects may value

information because it allows them to physically or men-

tally prepare for reward delivery [21,31,32��,57]. If this

were the case, informative offers would increase primary

reward-related signals in OFC. Alternately, the brain

could give reward a distinct value assignment – if so,

then OFC primary reward signals should have no net

enhancement by information. Our data supported the

second inherent value tagging view. Specifically, signals

coding water reward were not affected by the promise of

information about those rewards. Indeed, OFC neurons

appeared to use distinct (orthogonal) codes for informa-

tion about upcoming rewards and unsignaled rewards

(which also provided information), suggesting that they

encode the value of the information and not the informa-

tion itself [58].

Though not mutually exclusive, White et al. [34��] pro-

posed a cortico-basal ganglia circuit to also explain infor-

mation-seeking using an observing task that was adapted

from Bromberg-Martin and Hikosaka [35]. Their model

showed that ACC and striatum both track uncertainty.

Activity in both of these regions ramps up in anticipation

of information becoming available to resolve that uncer-

tainty (even before reward delivery). In addition, striatum

was found to causally direct gaze towards informative

targets while anterior pallidum was found to inhibit gaze
www.sciencedirect.com
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Figure 2
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A putative circuit diagram based on the evidence referenced in this review. Blue arrows indicate direct functional connectivity relating to

information-seeking as suggested by literature referenced here. Orange arrows indicate indirect functional connectivity or functional connectivity

with no clear evidence to disambiguate direct versus indirect connectivity. OFC, LHb, and DAM are involved in different processes that collectively

evaluate and feed the value of information and opportunity to gain information to ACC, which then activates effector regions (e.g. striatum, LIP/

IPL) to acquire information. OFC = orbital frontal cortex, LHb = lateral habenula, DAM = dopaminergic midbrain, ACC = anterior cingulate cortex,

LIP = lateral intraparietal cortex (non-human primate), IPL = inferior parietal lobule (human).
to uninformative targets. These results further delineate

the circuitry of curiosity.

Involvement of learning areas in curiosity

Information-seeking implies learning, which implies

memory. Indeed, curiosity enhances memory formation

for acquired information. It is not surprising, then, that it

naturally involves learning [9��,37,59–61,62��]. Most

importantly, curiosity activates the hippocampus and

the associated parahippocampal gyrus [36��,59,38]. It

was also found that variation in hippocampal involvement

predicted subsequent information recall accuracy. More-

over, increased activity while waiting for the answer to a

high-curiosity question and after incorrectly answering a

high-curiosity question lead to more accurate recall.

There are currently no electrophysiological studies on the

role of memory regions in curiosity-motivated learning.

Clearly, this is an important job for future research. In

particular, it remains critical to record in hippocampal

regions and in regions that are likely to anatomically

mediate between the hippocampus and the reward/pun-

ishment systems, such as OFC and posterior cingulate

cortex [63], vmPFC [32��], and amygdala [64].

Involvement of control areas in curiosity

Perhaps less obvious than motivation and learning, curi-

osity involves executive control. That is, it involves

carefully managing the tradeoff between competing

interests, including the ability to de-emphasize the

demand for immediate reward in favor of the most indi-

rect benefits of information. This fact may explain the

involvement of classic control areas, the most important of

which is the dorsal anterior cingulate cortex (dACC).

Several theories suggest that dACC serves to monitor

the demand for control or the need to adjust foraging
www.sciencedirect.com 
strategy, and send this information to downstream struc-

tures that regulate behavior, such as guiding gaze to

salient stimuli [65–73]. Curiosity about lottery outcomes

was shown to disinhibit the ACC in humans via the

increased amplitude of a ‘feedback-related negativity’

EEG signal that is believed to be related to dopaminergic

projections to the ACC [74]. ACC was also shown to be

responsive to anticipation of information during an

observing task in monkeys [34��].

In addition to regions that monitor the demand for

control, downstream effector structures are also necessary

to carry out the command. Gottlieb et al. have shown that

neurons in the monkey lateral intraparietal cortex (LIP)

produce stronger responses to informative task cues (after

they appear in the monkey’s peripheral vision, but before

a saccade is executed) compared to noninformative cues

in active sampling tasks [13,75–77,78��]. A recent study

provides human support for these findings, where the

authors found that the inferior parietal lobule (IPL, which

is believed to be the human homolog of monkey LIP)

encoded uncertainty in a lottery task. This finding was

based on an increased BOLD response during the pre-

sentation of lottery probabilities, which was highest when

outcome uncertainty was also highest [79]. These results

are important because they demonstrate that gaze can be

controlled by a drive to resolve uncertainty independent

of reward value and suggest that different circuits may

govern different types of executive control [78��]. Figure 2

shows a putative circuit diagram summarizing the results

on reward and control regions.

Conclusion
Our brains did not evolve to perform laboratory tasks;

they evolved to solve complex foraging problems embed-

ded in a rich natural world [80–84]. In the natural world,
Current Opinion in Behavioral Sciences 2020, 35:48–55
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information is almost always missing; natural foragers

therefore have a constant pressing hunger for information

[19]. A clever forager ought to devote a good deal of its

resources simply to learning about the world in an effort to

reduce uncertainty because even a small amount of

information gain can provide a strong competitive advan-

tage [85,86]. The value of information (or resolving

uncertainty) has likely endowed our cognitive repertoires

with an intrinsic information-seeking drive, which we call

curiosity [8]. This drive is likely reflected in the organi-

zation of specific brain circuits and the underlying com-

putations they implement.

So far research implicates three types of systems in

curiosity – reward, learning, and control. This work is,

naturally, prey to standard problems of reverse inference.

Therefore, future studies will be needed to work out the

specific processes associated with curiosity. In particular,

we need to fully delineate the circuits. Second, we have to

understand how curiosity both resembles and differs from

other basic drives. Third, we will have to understand the

role of valence – how curiosity relates to the price people

are willing to pay to avoid information [33��,60,87,88].
Fourth, we need to integrate study of curiosity into our

understanding of the systems neuroscience decision-

making under uncertainty more generally [89–92].

Finally, we need to integrate the study of curiosity into

the systems neuroscience of learning and motivation

more broadly, especially as how it can teach us about

intrinsic motivational variables. This information will

ultimately help us harness curiosity to improve education,

theories of learning, psychiatry, and our understanding of

ourselves and our animal friends.
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